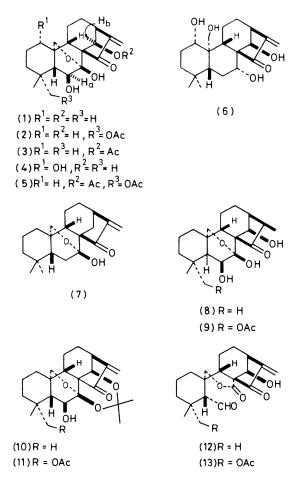
Longikaurin A and B; New, Biologically Active Diterpenoids from *Rabdosia longituba*

By Tetsuro Fujita,* Yoshio Takeda, and Tetsuro Shingu†


(Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770, Japan and †Faculty of Pharmaceutical Sciences, Kobe-Gakuin University, Tarumi-ku, Kobe 673, Japan)

Summary Chemical investigation of the biologically active substances of *Rabdosia longituba* led to the isolation of two new diterpenoids having an *ent*-kaurene skeleton, longikaurin A (1) and B (2), and their structures were established by spectroscopic and chemical data

DURING studies on the biologically active diterpenoids of plants belonging to the genus *Rabdosia* $[= Isodon]^1$ (Labiatae), we examined the constituents of the leaves of *R longituba* (Miquel) Hara $[I \ longitubas$ (Miq) Kudo] and isolated two new diterpenoids, longikaurin A (1) and B (2), together with known kamebakaurin (6) ² Longikaurin A (1) shows cytotoxicity[‡] in vitro against cultured rat

 $1 \mu g m l^{-1}$ of longikaurin A (1) shows inhibitory activity (74%) on the growth of cultured rat mammary cancer FM 3A/B cells Although longikaurin B (2) is likely to show a similar activity, poor solubility in Me₂SO-H₂O inhibited testing The detailed study will be published elsewhere mammary cancer FM 3A/B cells, and both longikaurin A (1) and B (2) show antibacterial activity.§

Longikaurin A (1), $C_{20}H_{28}O_5$, m.p. 223–225 °C, $[\alpha]_D^{25}$ $-91\cdot1^{\circ}$ (c $0\cdot21$, C_5H_5N), has been shown to contain a five membered ketone conjugated with an exo-methylene group from the following spectral data: λ_{max} (MeOH) 235 nm ($\epsilon~9530);~\nu_{max}$ (Nujol) 1705 and 1640 cm^-1; ^1H n.m.r.(δ 5.52 and 6.14 (each 1H, br s); ¹³C n.m.r.¶ δ 117.8 (t), 151.2 (s) [>C=CH₂], and 207.1 p.p.m. [ketone]. Compound (1) shows a strong absorption band in the i.r. spectrum (3400-3050 cm⁻¹) due to hydroxy groups and ¹H n.m.r. signals at δ 4.90 (1H, m), 6.10 (1H, m), and 6.59 (1H, d, J = 10 Hz) which are assigned to three hydroxy groups. The ¹H [δ 3.77 (1H, d, J 7 Hz after D₂O treatment, H_a) and 4.76 (1H, d, J_2 Hz, H_b) and ¹³C n.m.r. signals $[\delta 71.7 \text{ and } 72.4 \text{ p.p.m.} \text{ (each doublets)}]$ suggest that two of the three hydroxy groups are secondary and the third is tertiary. The ¹³C n.m.r. spectrum further shows signals at δ 96.4 and 64.5 p.p.m. due to the acetalic carbon and -CH₂O- group, respectively. These data show that longikaurin A (1) is pentacyclic. Considering the structures of

diterpenoids isolated so far from *Rabdosia* species,³ we presumed that (1) had the *ent*-7 β ,20-epoxy-kaur-16-en-15on-7 α -ol (7) structure as a basic skeleton. This presumption was supported by the fact that the dihydro-compound (8) shows a negative Cotton effect [λ_{max} (MeOH) nm (ϕ): 316 (-5141), 280 (+2981)].

Acetylation of (1) (acetic anhydride-pyridine) gave the monoacetate (3), m.p. 233–235 °C. The ¹H n.m.r. signal for H_b of (1) was shifted downfield to δ 5.68 (1H, J 1 Hz) indicating that H_b is located at C-14 α analogous to oridonin (4).⁴ A secondary hydroxy group is located at the C-6 β position. In INDOR^{5,6} experiments, a signal due to nuclear Overhauser enhancement (n.O.e.) was observed for the methyl groups (δ 1.09, 6H) when monitored at the frequency of H_a, which appears as a doublet (J 7 Hz) after D₂O treatment. On irradiation of the methyl groups, n.O.e. (6%) was observed for H_a.

Treatment of (1) with 2,2-dimethoxypropane in HCONMe₂ in the presence of p-toluenesulphonic acid gave the acetonide (10), m.p. 194—196 °C [¹H n.m.r. δ 1·32 and 1·64 (each 3H, 2 × s, acetal Me)], confirming β -configuration of the tertiary hydroxy group at C-7. Oxidation of (1) with periodic acid gave the aldehyde-lactone (12) [¹H n.m.r. δ 9·90 (1H, d, J 6 Hz, aldehydic proton); i.r. (CHCl₃) ν_{max} 1740, 1720, and 1710 cm⁻¹], the formation of which established chemically the existence of a hydroxy group at the C-6 β position. Thus it was shown that longikaurin A has the structure (1).

Longikaurin B (2), $\rm C_{22}H_{30}O_7,\ m.p.\ 238{---}239{\cdot}5\ ^\circ C,$ has the following physical properties: $[\alpha]_{\rm D}^{25}$ $-115\cdot9^\circ$ (c $0\cdot12,$ C_5H_5N ; λ_{max} (MeOH) 234.5 nm (ϵ 9510); ν_{max} (Nujol) 3490, 3350–3100; 1745, 1710, and 1650 $\rm cm^{-1}.$ The $^1\rm H$ n.m.r. spectrum (in C5D5N) is very similar to that of longikaurin A (1) except for the signals due to a tertiary methyl group (δ 1.34, 3H, s), an acetyl group (δ 1.95, 3H, s), and an acetoxy methyl group [δ 4.40 and 4.68, each 1H, each AB doublets, J 11 Hz]. The ¹³C n.m.r. spectrum when compared with that of (1) differs only in the number of methyl groups which decreases from 2 to 1 and the number of oxygenated methylene groups which increases from 1 to 2. These spectral data suggest that in the structure of longikaurin B (2), one of the two methyl groups at C-4 of longikaurin A (1) is oxidized to an acetoxy methyl group. In INDOR^{5,6} experiments with (2), signals due to n.O.e.'s were observed for the signals at δ 3.99 and 4.11 (each 1H, AB doublets, J 10 Hz, 20-H₂) and δ 1.37 (tertiary methyl group) when an AB doublet at δ 4.68 was monitored. N.O.e.'s were observed for an AB doublet at δ 4.68 on irradiation of the tertiary methyl group and $20-H_2$ (8 and 11%, respectively). These facts suggest that longikaurin B (2) corresponds to 19-acetoxylongikaurin A.

Compound (2) gave rise to the monoacetate (5), m.p. 182—183 °C [¹H n.m.r. δ 2·04 and 2·06 (each 3H, 2 × s, 2 × OAc), 5·66 (1H, br s, 14 α -H)], the acetonide (11) [¹H n.m.r. δ 1·34 and 1·64 (each 3H, 2 × s, acetal Me)], the aldehyde-lacetone (13) [¹H n.m.r. δ 9·97 (1H, d, J 6 Hz,

§ The minimal inhibitory concentrations (m.i.c.) of (1) against Staphylococcus aureus FDA 209P and Escherichia coli NIHJ are 12.5 and $>200 \ \mu g \ ml^{-1}$, respectively. Compound (2) also shows m.i.c. against the same bacteria (25 and $>200 \ \mu g \ ml^{-1}$, respectively). The detailed study will be published elsewhere.

¶ Unless otherwise noted, ¹H n.m.r. spectra were recorded in CDCl₃ solution and ¹³C n.m.r. spectra were recorded in C_5D_5N solution, using tetramethylsilane as internal standard.

aldehydic proton), 1r $\nu_{max}~(\mathrm{CHCl}_3)$ 1740 and 1705 $\mathrm{cm}^{-1}]$ and the dihydro-compound (9) [or d, λ_{max} (MeOH)/nm (ϕ) 317 (-4004), 280 (+3022)] These facts established that longikaurin B has the structure (2)

The isolation of longikaurin B (2), which is oxygenated at C-19, is the first example among diterpenoids having an

- ¹ H Hara, Japan J Bot, 1972, 47, 193
 ² T Fujita, T Ichihara, Y Takeda, Y Takaishi, Y Minato, and T Shingu unpublished results
 ³ E Fujita, Y Nagao, and M Node, Heterocycles, 1976, 5, 793
 ⁴ E Fujita, T Fujita H Katayama, and M Shibuya, J Chem Soc (C) 1970 1674
 ⁵ O Sciacovelli W von Philipborn C Amith and D Ginsburg, Tetrahedron, 1970 26 4589
 ⁶ T Kikuchi M Niwa T Yokoi, and T Shingu, Abstract papers of 17th Symposium on the Chemistry of Natural Products (Tokyo), 072 p. 140. 1973, p 140

⁷ I Kubo, M J Pettei, K Hirotsu, H Tsuji, and T Kubota, J Amer Chem Soc, 1978, 100, 628

This ent-kaurene nucleus so far from Rabdosia species substance may be a biosynthetic piecursor of the 6,7seco-ent-kaurenoid diterpene of the shikodonin⁷ type

(Received, 16th November 1979, Com 1203)

207