Platinacyclopentene Formation via δ-Hydrogen Abstraction

By S. David Chappell and David J. Cole-Hamilton*

(Department of Inorganic, Physical and Industrial Chemistry, University of Liverpool, Liverpool L69 3BX)

Summary Refluxing $Pt(PEt_3)_2(o\text{-CH}_2C_6H_4Me)_2$ in xylene affords a five-membered ring compound $Pt(CH_2C_6H_4CH_2)$ ($PEt_3)_2$ via δ -hydrogen abstraction.

The decomposition of diand poly-alkyl complexes of transition metals occurs via reductive elimination via loss of alkane, the extra hydrogen atom being abstracted from an α , $^2\beta$, 1 or γ^3 , 4 carbon atom of another alkyl ligand. We now report a rare example of loss of hydrocarbon from a dialkyl metal complex in which the abstracted hydrogen atom comes from the δ -carbon atom of another alkyl group. δ -Hydrogen abstraction from phosphines, phosphites, amines, etc. is well known, 5 but to our knowledge the only other example of δ -hydrogen abstraction from an alkyl ligand occurs in loss of methane from methyl(naphthylmethyl)bis(triphenylphosphine)platinum(II). 6

Reaction of $o\text{-MeC}_6H_4\text{CH}_2\text{MgBr}$ with $\text{PtCl}_2(\text{cod})$ (cod = cyclo-octa-1,5-diene) and PEt_3 affords white crystals of $cis\text{-Pt}(\text{PEt}_3)_2(\text{CH}_2\text{C}_6H_4\text{Me})_2$,† analogous to $\text{Ni}(\text{PBu}_3)_2(\text{CH}_2\text{C}_6H_4\text{Me})_2$.7 The cis-sterochemistry is confirmed by the ¹³C signal from the methylene protons of the o-methylbenzyl group (δ 27·45 dd; J_{PHcis} 9 Hz, J_{PHtrans} 94 Hz).

When this complex is refluxed in xylene for several hours,

a new compound, Pt(CH₂C₆H₄CH₂)(PEt₃)₂,† may be isolated as white crystals (see Scheme). The compound is monomeric in benzene and the mass spectrum shows a parent ion peak at 535 a.m.u. (195Pt) and fragmentation pattern as ex-

pected for $Pt(CH_2C_6H_4\dot{C}H_2)(PEt_3)_2$. In the ¹H n.m.r. spectrum, apart from multiplets arising from co-ordinated PEt₃.

the only high-field resonance is an apparent quartet (δ 3·55), flanked by satellites ($J_{\rm Pt-H}$ 66 Hz), typical⁸ of a cis-dialkyl bisphosphine complex of platinum. The phenyl resonances show a typical AA'BB'-type pattern with broadening of the low-field half of the spectrum arising from coupling to phosphorus and platinum. The alkyl region of the ¹³C n.m.r. spectrum (δ 10·96 p.p.m., 1:4:1t $J_{\rm Pt-C}$ 9·5 Hz, $C_{\rm f}$; δ 19·99, d of 1:4:1t, $J_{\rm PC}$ 26·3 Hz, $J_{\rm Pt-C}$ 13 Hz, $C_{\rm e}$; δ 36·05, dd of 1:4:1t $J_{\rm PCcis}$ 9·0 Hz, $J_{\rm PCtrans}$ 92·4 Hz, $J_{\rm Pt-C}$ 620 Hz, $C_{\rm a}$; is qualitatively similar to that of the dialkyl complex but lacks the resonance from the o-Me carbon atoms. Furthermore, the symmetrical nature of the phenyl ring is confirmed by there being only three resonances in the phenyl region (δ

- † Satisfactory analyses have been obtained on both complexes.
- ‡ For assignments see Scheme.

126.65 p p m , 1:4:1t, $J_{\text{Pt-C}}$ 4 Hz, Cd , δ 132.69, t of 1:4:1t, J_{PC} 3 Hz, J_{Pt-C} 86 Hz, C_e , δ 157.46, t of 1:4:1t, J_{PC} 4 Hz, $J_{\text{Pt-C}}$ 37 Hz, C_{b} , as opposed to six for the dialkyl complex

Final confirmation of the presence of a benzoplatinacyclopentene ring arises from the reaction of the compound with an excess of iodine to give 1,2-bis(iodomethyl)benzene

The synthesis of a benzotitanacyclopentene from $(Me_3SiC_5H_4)_2TiCl_2$ and $o-C_6H_4(CH_2MgCl)_2$ has recently been reported 9

We are currently investigating other complexes of the 2-methylbenzyl ligand and preliminary results for PtL₂-(CH₂C₆H₄Me)₂ suggest that a similar metallation occurs for $L = PPh_3$, but that for $L = P(o-tolyl)_3$, refluxing in xylene causes metallation of the phosphine

We thank Johnson Matthey Ltd for loans of K2PtCl4 and the SRC for a studentship (SDC)

(Received, 10th December 1979, Com 1278)

- ¹G W Parshall and J J Mrowca, Adv Organomet Chem, 1968, 7, 157, and references therein ²R R Schrock, Acc Chem Res, 1979, 12, 98, and references therein

- R R Schrock, Acc Chem Res, 1979, 12 98, and references therein
 R A Anderson, R A Jones, and G Wilkinson, J Chem Soc, Dalton Trans, 1978, 446
 P Foley and G M Whitesides, J Am Chem Soc, 1979, 2732
 M I Bruce, Angew Chem Int Ed Engl, 1976, 16, 73, and references therein
 J A Duff, B L Shaw, and B L Turtle, J Organomet Chem, 1974 66, C18
 K Jacob, K-H Tiele, C H Keilberg, and R Niebuhr, Z Anorg Allg Chem, 1975, 415, 109
 E O Greaves, R Bruce, and P M Matths, J Chem Soc, Chem Commun, 1967, 860
 M F Lappert, T R Martin, and C R C Milne, 9th Int Conf on Organomet Chem, Dijon, Abstracts 1979, C14