Catalytic Reduction of Dinitroaromatic Compounds with Hydrogen Sulphide–Carbon Monoxide. A Novel, Low-cost Replacement for Elemental Hydrogen

By CHARLES T RATCLIFFE* and GEZA PAP

(Corporate Research Center, Allied Chemical Corporation, PO Box 1021-R, Morristown, NJ 07960)

Summary A mixed reducing gas consisting of H_2S and CO, when used with sulphided Fe on Al_2O_3 heterogeneous catalysts, has successfully reduced dimitroaromatic to diaminoaromatic compounds in high yield and conversion

New, low-cost reducing agents capable of replacing elemental hydrogen in chemical processes are of increasing interest. Hydrogen sulphide is now a potential major raw material as more high-sulphur crude oil and sour natural gas sources are being utilized. During our study on selective reduction of NO_x to hydroxylamine with H_2S ,¹ we discovered the remarkable reducing power which can be achieved when hydrogen sulphide is combined with carbon monoxide and used over sulphided non-noble metal, heterogeneous catalysts. This mixed reducing agent has now been investigated with industrially important nitroaromatic compounds, such as nitrobenzene and dinitrotoluene

We report the complete conversion of 2,4-dimitrotoluene in < 0.5 s contact time at 325 °C to a product containing

2,4-diaminotoluene of high purity with a recovered yield of > 86% in our laboratory reactor system, reaction (1)]

$$2,4-(O_2N)_2C_6H_3Me + 6H_2S + 6CO \longrightarrow 2,4-(H_2N)_2C_6H_3Me + 6COS + 4H_2O$$
(1)

Sulphided group 8 metals on Al₂O₃ are the most effective catalysts for this reaction The best catalysts for high selectivity have been prepared by standard wet impregnation of 2 5% $Co(NO_3)_2$ on γ -Al₂O₃ (Harshaw 0104) or by wet impregnation of 10% Fe(NO₃)₃ on γ -Al₂O₃ (Girdler T-1746) pellets The catalysts are thermally activated at 500 °C for l~h followed by treatment with a 20% stream of H_2S at 400 °C for 1 h A fixed-bed microcatalytic reactor containing 1.36 g of 18/30 mesh catalyst was used for this A metered gas stream of $20 \text{ cm}^3 \text{ min}^{-1}$ of N₂, study 30 cm³ min⁻¹ of CO, and 30 cm³ min⁻¹ of H₂S was combined with a metered feed of $1 2 \text{ g h}^{-1}$ of a solution containing 20 wt % of the nitroaromatic compound in toluene The mixture was passed over a preheated bed of inert quartz chips at 325 °C before contacting the catalyst The results are in the Table

Table	Gas-phase	reduction	with	H ₂ S-CO ^a
-------	-----------	-----------	------	----------------------------------

Reactant	Catalyst	Time/min on stream	m-DAB ^b	DATC	MeDATd	
2,4-Dinitrotoluene	10% Fe ₂ O ₃ on γ -Al ₂ O ₃ (Harshaw	104 755	93	$\begin{array}{c} 61 \ 0 \\ 100 \ 0 \end{array}$	29 6	
	0104 support) 5% Co on γ-Al ₂ O ₃	$\begin{array}{r} 1050 \\ 270 \end{array}$	4.5	94·8 70 0	25 5	5·12e
,,	$5 \gamma_0 \cos \theta + A_2 \cos \theta$ (Harshaw 0104 support)	715	4 ∙5 5∙8	81.1	25 5 13·1	
2,6-Dinitrotoluene	$10\frac{1}{6}$ Fe ₂ O ₃ on γ -Al ₂ O ₃ (Gırdler T-1746 support)	63 454	4 ∙5	80·2 100·0	15·3 ^r	
m-Dinitrobenzene	,,	$\begin{array}{c} 45 \\ 238 \end{array}$	$100 \ 0 \\ 71.9$			20·9g

^a Conditions for all reactions 325 °C, 04 s contact time fixed bed microflow reactor, 100% conversion in all cases ^b m-Diaminobenzene ^c 2,4- or 2,6-Diaminotoluene ^d 4,6-Diamino-m-xylene ^e 4-Amino-2-nitrotoluene ^f Diaminoxylene, isomeric structure not yet identified ^g m-Aminonitrobenzene

J.C.S. CHEM. COMM., 1980

A potential secondary reaction of urea formation via the reaction of amine products with CO was not observed under our short residence-time flow conditions. Intermolecular alkylation of diaminotoluene to form *m*-diaminobenzene with methyl addition to diaminotoluene was the major side reaction, the extent of which decreased after 5 h on stream with iron sulphide-impregnated γ -Al₂O₃ catalysts.

The mechanism for H₂S-CO reduction on our sulphided catalysts involves strong chemisorption of H_2S on the surface, as also observed in earlier studies by Owens and Amberg² on supported catalysts. In the absence of CO, electron transfer from chemisorbed H₂S to adsorbed nitrogroups initially occurs with the oxidation of sulphide to form free sulphur as an observed product. A rapid decline in activity in the absence of CO was accompanied by a phase change in the cobalt component, with the active Co_3S_4 phase being degraded to an apparently inactive CoS_2

phase. The Co₉S₈ phase associated with Co-Mo hydrosulphurization catalysts³ was not observed under these conditions involving high concentrations of H₂S or H₂S-CO. The presence of CO in the reactant stream, however, allowed the catalyst to maintain high activity with the removal of sulphur as carbonyl sulphide. The role of CO in the reduction process can be viewed as the gas-shift reaction (2). The formation of 'nascent' hydrogen atoms

$$H_2S + CO \rightleftharpoons COS + H_2$$
 (2)

on the catalyst surface would result in a rapid reaction with adsorbed nitroaromatic compounds. Metal sulphides are known to catalyse this reaction, as recently reported by Fukuda, et al.4

(Received, 14th September 1979; Com. 991.)

¹C. T. Ratcliffe, U.S. P. 4,115,523. ²P. J. Owens and C. H. Amberg, 'Solid Surfaces and the Gas Solid Interphase,' Advances in Chemistry Series No. 33, ed. R. F. Gould, American Chemical Society, 1961, pp. 182–198.

³ P. Grange and B. Delmon, J. Less-Common Met., 1974, 36, 353.

⁴ K. Fukuda, M. Dokiya, T. Kameyama, and Y. Kotera, J. Catal., 1977, 49, 379.