
New Class of Electrically Conductive Metallomacrocycles: Iodine-doped Dihydrodibenzo[b,i][1,4,8,11]tetra-azacyclotetradecine Complexes

By Lang-Sheng Lin,^a Tobin J Marks,^{*a} Carl R Kannewurf,^b Joseph W Lyding,^b Malcolm S McClure,^b Mark T Ratajack,^b and Tsung-Chuan Whang^b

(^aDepartment of Chemistry, ^bDepartment of Electrical Engineering and Computer Science, and Materials Research Center,^{a,b} Northwestern University, Evanston, Illinois 60201)

Summary Iodine doping of metallodihydrodibenzo[b,i]-[1,4,8,11]tetra-azacyclotetradecine complexes produces a new class of electrically conductive, mixed-valent metallomacrocycles

IODINE doping of conjugated macrocycles with an MN₄ core (M = metal) is a viable method for the preparation of low-dimensional, mixed-valent compounds¹ Moreover. the degree of incomplete charge-transfer in such solids can be readily assessed from the stoicheiometry and spectroscopic identification of the form of iodine present 1,2 In the case of 22π -electron phthalocyanines [M(pc)]³ and related porphyrins,⁴ molecular-stacking axis conductivities are relatively high [$\sigma(300 \text{ K}) = 1-650 \ (\Omega \text{ cm})^{-1}$, depending on M and the macrocycle substituents] and frequently exhibit a region of 'metal-like' $(d\sigma/dT < 0)$ temperature To understand the role of the metallodependence macrocycle molecular and electronic structure in stabilizing the mixed-valent, highly conductive state, we need to establish whether facile charge-transport is restricted to 22π -electron systems or whether it occurs in other Although different in molecular structure materials and symmetry, dihydrodibenzo[b,i][1,4,8,11]tetra-azacyclotetradecine (taa) complexes exhibit distinct electronic similarities to phthalocyanines (MO topologies,⁵ ionization potentials,⁵ reduction potentials,⁶ and optical spectra⁵) We report here that the iodine oxidation of taa derivatives yields a large, new class of highly conductive metallocrocycles' in which properties can be manipulated by substituent variation and in which a 'metal-like' conductivity is observed

(1) R = H, M = Co, N1, Cu, Pd, H_2 [M(taa)] (2) R = Me, M = N1, Pd, H_2 [M(tmtaa)]

Solution iodination of purified M(taa) and M(tmtaa) compounds⁸ yields darkly coloured powders, the stoicheiometries of which (Table) can be systematically varied with reaction conditions Diffusion-growth techniques have yielded needle-like single crystals of $[Ni(taa)]I_{1\ 80}$ (A) and $[N_1(tmtaa)]I_{244}(B)$ Resonance Raman spectra (ν_0 5145 Å) of all the $[M({\tt taa})]I_{{\it x}}$ and $[M({\tt tmtaa})]I_{{\it y}}$ compounds with $x, y \leq \sim 3$ exhibit the characteristic I_3^- scattering pattern^{1,2} (v 108 cm⁻¹), while for $x, y \ge \sim 3$, I_5^- (v 165 cm⁻¹)^{1,2} is the predominant polyiodide For (A) and (B) the charge distributions can thus be represented as [N1(taa)]^{0 6+-} $(I_{\,\overline{3}\,})_{0\,\,6}$ and $[\mathrm{N1}(\mathrm{tmtaa})]^{0\,\,8+}(I_{\,\overline{3}\,})_{0\,\,8}$ Preliminary singlecrystal diffraction studies9 on (A) and (B) are consistent with the now common structural pattern¹ of segregated, partially oxidized metallomacrocyclic donor stacks and parallel chains of acceptor counterions With respect to the nature of the oxidation, the variety of M derivatives which can be oxidized (including $M = H_2$) and the supporting esr data⁶ indicate that the oxidation involves MOs which are predominantly ligand-centred, producing a π radical cation-hole, as found for iodinated phthalocyanines³

and porphyrins.⁴ With respect to substituent effects, it is noteworthy that the incorporation of electron-releasing methyl groups (R = Me) is accompanied, in (B), by a higher degree of partial oxidation while, for R = Cl, the metallomacrocycle cannot be oxidized with iodine.

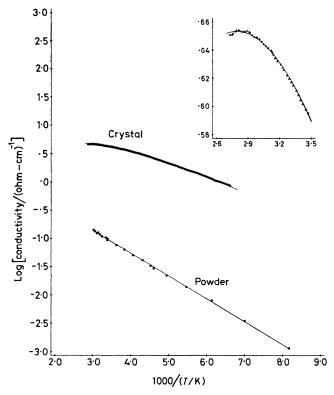


FIGURE. Variable-temperature electrical-conductivity data for a single crystal of [Ni(tmtaa)] $I_{2\cdot44}$ (B) and a powder sample of [Ni(tmtaa)] I_{2} , The single crystal data fit equation (1) with α 2.51 and Δ 0.090 eV; an exponential fit of the powder data is made with Δ 0.079 eV. The inset shows the single crystal data in the high temperature region.

Four-probe van der Pauw data on pressed pellets reveal large increases in electrical conductivity upon M(taa) and M(tmtaa) iodination (Table). The $[M(taa)]I_x$ powder values are generally greater than those for $[M(tmtaa)]I_{u}$ and are comparable to the 'molecular metal' $[Ni(pc)]I_{1.0}$.³ With the exception of $M = H_2$, conductivities are relatively insensitive to x, y, and M. The temperature dependence

TABLE. Electrical conductivity data for $[M(taa)]I_z$ and $[M(tmtaa)]I_v$ compounds.

Compound	σ (300 K) Powder	(Ω cm ⁻¹) Single crystal	$\Delta/{ m eV}$ a
Ni(too)h	1.8×10^{-15}		2.25
Ni(taa) ^b	1.8×10^{-1} 2.1×10^{-1}		0.093
$[Ni(taa)]I_{0.8}$			
$[Ni(taa)]I_{1.0}$	4.5×10^{-1}	1 50	0.051
$[Ni(taa)]I_{1.80}(A)$		1-50	
[Ni(taa)]I _{2.6}	$8\cdot1$ $ imes$ 10^{-2}		
[Ni(taa)]I _{7.0}	$2\cdot 3$ $ imes$ 10^{-1}		
Ni(tmtaa) ^b	4.0×10^{-14}		1.36
[Ni(tmtaa)]I _{1.7}	$1\cdot4$ $ imes$ 10^{-2}		
[Ni(tmtaa)]I _{2.44} (B)		1-20	
[Ni(tmtaa)]I.	$3\cdot8 \times 10^{-2}$		0.079
Co(taa) ^b	7.9×10^{-13}		1.33
$[Co(taa)]I_{1.9}$	1.1×10^{-2}		
Cu(taa) ^b	1.8×10^{-10}		0.89
$[Cu(taa)]I_{1.8}$	1.1×10^{-3}		0.00
$[Pd(taa)]I_{0.8}$	1.3×10^{-1}		0.080
	9.3×10^{-4}		0.030 0.154
$[Pd(tmtaa)]I_{0.4}$			0.194
$[H_2(taa)]I_{1\cdot4}$	$2\cdot4 imes10^{-5}$		
$[H_2(tmtaa)]I_{1.6}$	3.8×10^{-6}	.	
[Ni(pc)]I _{1.0} °	$7\cdot0~ imes~10^{-1}$	300-650	0.036

^a From a least-squares fit to $\sigma = \sigma_0 e^{-\Delta/kT}$ of the powder data. ^b R. Müller and D. Wöhrle, Makromol. Chem., 1975, 176, 2775. ° Ref. 3.

of powder conductivities is thermally activated (Table, Figure). Four-probe single crystal data for samples of (B) (Figure) exhibit a region approaching 'metal-like' behaviour, which, above 130 K, is given approximately by equation (1),¹⁰ which assumes a semiconductor with a

$$\sigma = A T^{-\alpha} \mathrm{e}^{-\Delta/kT} \tag{1}$$

thermally activated carrier-concentration and a temperature-dependent mobility. Alternatively, a polaron model¹¹ Not unexpectedly,1-4 preliminary staticmay apply. susceptibility measurements on (A) reveal weak, relatively temperature-independent paramagnetism. Crystals of (A) are exceedingly fragile and $\sigma(300 \text{ K})$ (Table) is probably a minimum value since the powder data are comparable to those of $[Ni(pc)]I_{1\cdot 0}$. Single crystals of this latter compound exhibit $\sigma(300 \text{ K}) \ 300-650 \ (\Omega \text{ cm})^{-1.3}$

Added in proof. After submission of this manuscript, other workers reported corroborative room temperature measurements on powders of Ni(taa) $I_{1.57}$ and Ni(taa) $Br_{2.43}$.¹²

This research was supported by the N.S.F.-M.R.L. Program through the N.U. Materials Research Center.

(Received, 4th July 1980; Com. 728.)

¹ (a) T. J. Marks and D. W. Kalina in 'Extended Linear Chain Compounds,' ed. J. S. Miller, Plenum Publishing Corp., New York,

¹ (a) T. J. Marks and D. W. Kalina in 'Extended Linear Chain Compounds,' ed. J. S. Miller, Plenum Publishing Corp., New York, in the press; (b) T. J. Marks, Ann. N. Y. Acad. Sci., 1978, 313, 594.
² M. A. Cowie, A. Gleizes, G. W. Grynkewich, D. W. Kalina, M. S. McClure, R. P. Scaringe, R. C. Teitelbaum, S. L. Ruby, J. A. Ibers, C. R. Kannewurf, and T. J. Marks, J. Am. Chem. Soc., 1979, 101, 2921, and references therein.
³ (a) J. L. Petersen, C. S. Schramm, D. R. Stojakovic, B. M. Hoffman, and T. J. Marks, J. Am. Chem. Soc., 1977, 99, 286; (b) C. S. Schramm, D. R. Stojakovic, B. M. Hoffman, and T. J. Marks, Science, 1978, 200, 47; (c) R. P. Scaringe, C. J. Schramm, D. R. Stojakovic, B. M. Hoffman, and T. J. Marks, Science, 1978, 200, 47; (c) R. P. Scaringe, C. J. Schramm, D. R. Stojakovic, B. M. Hoffman, and J. A. Ibers, J. Am. Chem. Soc., 1980, 102, 3435.
⁴ T. E. Phillips, R. P. Scaringe, B. M. Hoffman, and J. A. Ibers, J. Am. Chem. Soc., 1980, 102, 3435.
⁵ C. W. Dirk, I. Fragalà, and T. J. Marks, manuscript in preparation.
⁶ J. C. Dabrowiak, D. P. Fisher, F. C. McElroy, and D. J. Macero, Inorg. Chem., 1979, 18, 2304; E. A. Mintz and T. J. Marks, unpublished results.

published results.

⁷ (a) L.-S. Lin, Ph.D. thesis, Northwestern University, 1979; (b) M. S. McClure, L.-S. Lin, T.-C. Whang, M. T. Ratajack, C. R. Kannewurf, and T. J. Marks, Bull. Am. Phys. Soc., 1980, 25, 315.

(a) L.-S. Lin and T. J. Marks, manuscript in preparation; (b) M. C. Weiss, G. Gordon, and V. L. Goedken, Inorg. Chem., 1977, 16, 305, and references therein.

¹⁰ L. Pace and J. A. Ibers, personal communication.
¹⁰ A. J. Epstein, J. S. Miller, and P. M. Chaikin, *Phys. Rev. Lett.*, 1979, 43, 1178, and references therein.
¹¹ B. M. Hoffman, T. E. Phillips, and Z. F. Soos, *Solid State Commun.*, 1980, 33, 51.
¹³ Y.-M. Wuu, S.-M. Peng, and H. Chang, *J. Inorg. Nucl. Chem.*, 1980, 42, 839.