Nitroamine Radicals as Intermediates in the Functionalization of Non-activated Carbon Atoms

By Rosendo Hlrnández, Augusto Rivera, José A Salazar, and Ernesto Suárez*
(Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Spain)

Summary Photolysis of N-iodonitroamines generated in situ from the steroidal nitroamines 6β -nitroamino- 5α -cholestan- 3β -ol acetate, 6β -nitroamino- 5α -cholestane- 3β , 5α -diol diacetate, and 20R-nitroaminopregn-5-en-3-ol acetate removes hydrogen atoms from the Me-18 and Me-19 groups to give 6β , 19-N-nitroepimino- 5α -cholestan- 3β -ol acetate, 6β , 19-N-nitroepimino- 5α -cholestane- 3β , 5α -diol diacetate, and 18, 20R-N-nitroepiminopregn-5-en- 3β -ol acetate

The free radicals needed to introduce substituents into the C-18 and C-19 steroidal methyl-groups and also into other

skeletal positions have been generated by the fragmentation of N-halogenoamines (Hofmann-Loffler reaction), N-halogenoamides, azides, nitrites (Barton reaction), alcohols, and hypohalites, and also by ketone irradiation 1 Of these, those that give the epimino-compounds are generally the most difficult to apply Hence we are interested in developing a method which enables remote functionalization by the amine radicals $R-\overline{N}\cdot -X$ We report here results obtained by the generation of these radicals $(X=NO_2)$ in the steroidal substrates (1) [m p 194—196 °C, [α]_D 42° (CHCl₃)], (3) [m p 246—247 °C, [α]_D 84° (CHCl₃)], and (5) [m p 189—190 °C, [α]_D - 56° (CHCl₃)] †

[†] The nitroamines were prepared by NaBH₄ reduction (M J Haire and G A Boswell, Jr , J Org Chem , 1977, 42, 4251) of the corresponding nitroimines The 6-nitroimino-5 α -cholestan-3 β ,5 α -diol diacetate has been described previously (A G González, R Freire, M G García-Estrada, J A Salazar, and E Suárez, An Quim , 1972, 68, 1145) The 6-nitroimino-5 α -cholestan-3 β -ol acetate [amorphous, ν_{max} (CHCl₃) 1625, 1560, and 1320 cm⁻¹] and the 20-nitroiminopregn-5-en-3 β -ol acetate [m p 175—176 °C, [α]_D —21°, ν_{max} (KBr) 1620, 1580, and 1315 cm⁻¹] have been prepared from the corresponding ketoximes and nitrous acid (G Buchi and H Wuest, J Org Chem , 1979, 44, 4116) Full details will be reported elsewhere

In a typical procedure a solution of the nitroamine in cyclohexane or dichloromethane, treated with $\rm I_2$ (1 mol. equiv.) and Pb(OAc)₄ or HgO (4 mol. equiv.) at 45 °C, was irradiated with two 150 W tungsten filament lamps for 1 h.

The acetate of 6β , 19-N-nitroepimino- 5α -cholestan- 3β -ol (2), amorphous, was obtained from (1)‡ in a yield of 63%§ [chemical ionisation mass spectrum $M^+ + \mathrm{NH_3}$, m/e 505; mass spectrum $M^+ - \mathrm{NO_2}$, $\mathrm{C_{29}H_{48}NO_2}$, m/e 442·3767; ν_{max} (CHCl₃) 1730, 1490, and 1315 cm⁻¹; λ_{max} (EtOH)

241 nm (ϵ 7400); ¹H n.m.r. inter alia δ (CDCl₃) 4·39 (d, J 4 Hz, H-6 α) and 3·73br (s, $w_{\frac{1}{2}}$ 4 Hz, 2 \times H-19); ¹³C n.m.r. inter alia δ (CDCl₃) 65·1 (C-6) and 51·2 p.p.m. (C-19)].

Similarly, irradiation of 6 β -nitroamino-5 α -cholestan-3 β ,-5 α -diol diacetate (3) gave (4) (60%) \S , amorphous, [M^+ -NO₂, m/e 500; ν_{max} (CHCl₃) 1730, 1490, and 1315 cm⁻¹; 1 H n.m.r. δ (CDCl₃) 5·17 (d, J 4 Hz, H-6 α) and 3·73br (s, $w_{\frac{1}{4}}$ 4 Hz, $2 \times$ H-19; 13 C n.m.r. δ (CDCl₃) 63·8 (C-6) and 49·8 p.p.m. (C-19)].

The same general process was also applied to the functionalization of the 18-methyl-group in (5). In this case the 18-iodo-derivative (6) was obtained (ca. 25%)§ [m.p. 192—194 °C (decomp.), $M^+ - \text{NO}_2$, m/e 470; v_{max} 3390, 3250, 1730, 1575, and 1315 cm⁻¹, λ_{max} (EtOH) 224 nm (ϵ 10,300); ¹H n.m.r. δ (CDCl₃) 3·05, 3·26 (ABq, J_{AB} 11 Hz, 2 × H-18), and 4·25 (m, H-20); ¹³C n.m.r. δ (CDCl₃) 55·75 (C-20) and 7·1 p.p.m. (C-18)]. Treatment of compound (6) with silver acetate (4 mol. equiv.) in acetone (18 h at room temperature) gave 18,20*R*-*N*-nitroepiminopregn-5-en-3 β -ol acetate (7) (100%) [m.p. 190—192 °C, M^+ — NO₂, m/e 356; ν_{max} 1725, 1490, and 1305 cm⁻¹; λ_{max} (EtOH) 243 nm (ϵ 9100); ¹H n.m.r. δ (CDCl₃) 4·38 (q, J 6 Hz, H-20) 3·7br (s, $w_{\frac{1}{2}}$ 4 Hz, 2 × H-18); ¹³C n.m.r. δ (CDCl₃) 53·7 (C-18) and 65·5 p.p.m. (C-20)].

Since the reduction of nitroamines to amines is a known reaction,² this cyclization constitutes a formal synthesis of 1,4-epimino-compounds.

A.R. thanks the Centro Iberoamericano de Cooperación of Spain for a fellowship.

(Received, 2nd July 1980; Com. 719.)

‡ All new crystalline compounds gave satisfactory analytical data.

§ The yields, which have not been optimized, are of the same order as those described for the photolysis of the corresponding hypoiodites.

¹ K. Heusler and J. Kalvoda in 'Organic Reactions in Steroids Chemistry,' Vol. 2, eds. J. Fried and J. A. Edwards, Van Nostrand Reinhold, New York, 1971, p. 237; D. N. Kirk and M. P. Hartshorn, 'Steroid Reaction Mechanisms,' Elsevier Publishing, Amsterdam, 1968, p. 394; J. Kalvoda and K. Heusler, Synthesis, 1971, 501; K. Heusler and J. Kalvoda, Angew. Chem. Int. Ed. Engl., 1964, 3, 525.

² P. Bruck and A. H. Lamberton, J. Chem. Soc., 1955, 3997.