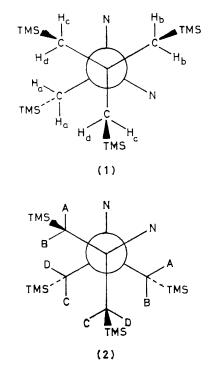
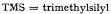
Journal of

The Chemical Society,

Chemical Communications


NUMBER 21/1980


Formation and Stability of 1,1- and 1,2-Bis(dimethylamido)tetrakis-(trimethylsilylmethyl)dimolybdenum(*Mo*=*Mo*)

By MALCOLM H. CHISHOLM* and IAN P. ROTHWELL

(Department of Chemistry, Indiana University, Bloomington, Indiana 47405)

ADDITION of anhydrous HBr (2 equiv.) to a toluene solution of $Mo_2(CH_2SiMe_3)_{6}^1$ at -78 °C yields Me_4Si and $1,2-Mo_2Br_2$ - $(CH_2SiMe_3)_4$ (2)[†] which can be purified by crystallization from cold hexane solutions. Addition of anhydrous NHMe. (>> 2 equiv.) to a hexane solution of $1,2-Mo_2Br_2(CH_2Si-$ Me₃)₄ yields a precipitate of Me₂NH₂+Br- and an orangebrown solution of 1,2-Mo₂(NMe₂)₂(CH₂SiMe₃)₄ which can be isolated as an analytically and isomerically pure orangebrown liquid by filtration (to remove Me₂NH₂+Br-) and removal of the solvent under reduced pressure.[‡] Addition of LiNMe₂ (≥ 2 equiv.) to a hexane solution of 1,2-Mo₂Br₂-(CH₂SiMe₃)₄ yields an orange-brown solution and a fine precipitate of LiBr which can be removed by filtration. Removal of the solvent under reduced pressure yields an orange-brown liquid which is ca. 95% 1,1-Mo₂(NMe₂)₂(CH₂- $SiMe_{3}_{4}$ (1) and 5% 1,2-Mo₂(NMe₂)₂(CH₂SiMe₃)₄ (2).† This ratio of isomers has not been observed to change with time. Both isomers are air-sensitive and must be handled in dry and oxygen-free atmospheres and solvents. In the mass spectrometer samples of Mo₂(NMe₂)₂(CH₂SiMe₃)₄ prepared by both routes gave molecular ions. The substitution pattern, 1,1- vs. 1,2-, is readily deduced from ¹H n.m.r. studies.

† 1,2- and 1,1- denote the isomers (Me₃SiCH₂)₂XMoMoX(CH₂SiMe₃)₂ and (Me₃SiCH₂)X₂MoMo(CH₂SiMe₃)₃, respectively.

[‡] Standard vacuum-line and Schlenk techniques were used.

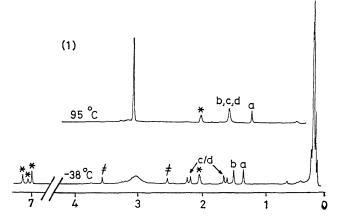


FIGURE 1 ¹H N m r spectra of 11-Mo₂(NMe₂)₂(CH₂SiMe₃)₄ recorded at 220 MHz in [²H₈] toluene₈ at -38 °C and at +95 °C (inset) The *N*-methyl-group signals of 12 Mo₂(NMe₂)₂(CH₂-SiMe₃)₄ are denoted by \ddagger proton impurities in the [²H₈] toluene solvent are indicated by *

methylene protons associated with the other two trimethylsilylmethyl-ligands are diastereotopic and give rise to an AB quartet, c and d in Figure 1 Upon raising the temperature, rotation about the Mo=Mo bond becomes fast on the n m r time scale The AB quartet and one of the singlets collapse and then coalesce to give at + 95 °C two singlets in the integral ratio 3:1

The ¹H nmr spectrum of $1,2-Mo_2(NMe_2)_2(CH_2S_1Me_3)_4$ recorded at -43 °C and 220 MHz is shown in Figure 2 This is consistent with that expected for a low-temperature limiting spectrum of the gauche-rotamer (2) There are two types of trimethylsilylmethyl-ligands and for each the methylene protons are diastereotopic, there are two Nmethyl-resonances corresponding to proximal and distal methyl-groups ² Upon raising the temperature, rotations about the Mo-N bonds and the Mo=Mo bond become rapid on the n m r time-scale until, at +120 °C, a high-temperature limiting spectrum is approached having a single N-methyl-resonance, a single silvlmethyl-resonance and an AB quartet for the methylene protons The rotation about the Mo \equiv Mo bond could be either gauche \rightleftharpoons gauche' (enantiomerization) or $gauche(g) \rightleftharpoons anti(a) \rightleftharpoons gauche'(g)$ In the absence of a significant equilibrium concentration of the anti-rotamer these can not be distinguished, though on steric grounds the latter $(g \rightleftharpoons a \rightleftharpoons g')$ seems more likely to be the threshold mechanism for rotation about the M≡Mo bond

Though a number of ethane-like $d^3 \cdot d^3$ (M=M) dimers of the general formula $M_2X_2Y_4$, where M = Mo and W, have been characterized previously,^{3,4} this is the first observation that substitution at these dimetal centres can lead to either a 1,1- or a 1,2-substituted product Stability with respect to isomerization implies a substantial kinetic barrier to alkyl-group transfer between the molybdenum atoms in the ethane-like products, though alkyl-group transfer must occur in the formation of the 1,1-isomer The further reactions of these isomers promise to be interesting For example, addition of ButOH to 1,1- and 1,2-Mo₂(NMe₂)₂-(CH₂SiMe₃)₄ yields 1,1- and 1,2-Mo₂(OBut¹)₂(CH₂SiMe₃)₄,

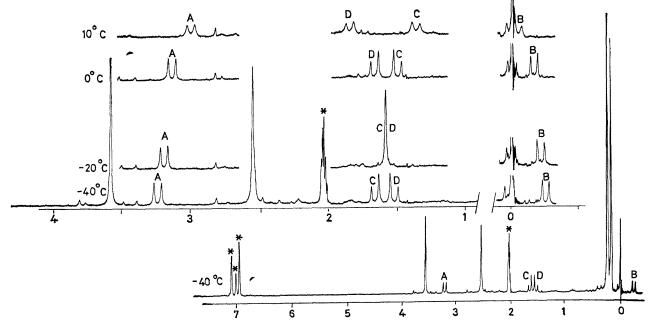


FIGURE 2 ¹H N m r spectrum of gauche-1 2-Mo₂(NMe₂)₂(CH₂SiMe₃)₄ recorded at 220 MHz in [²H₈]toluene at -40 °C The insets show a scale expansion of the methylene proton resonances over the temperature range -40 to +10 °C An absolute assignment of the methylene protons signals A, B, C, D with those labelled accordingly in (2) is not possible

respectively, whereas with CO₂ (1 atmos., 25 °C) the 1,1-isomer yields $(\rm Me_3SiCH_2)(\rm Me_2NCO_2)MoMo(CH_2Si Me_3$)₃ while the 1,2-isomer does not react.

Petroleum Research Fund administered by the American Chemical Society for financial support.

We thank the National Science Foundation and the

(Received, 26th June 1980; Com. 696.)

- ¹ F. Huq, W. Mowat, A. Shortland, A. C. Skapski, and G. Wilkinson, *Chem. Commun.*, 1971, 1079.
 ² M. H. Chisholm, F. A. Cotton, B. A. Frenz, W. W. Reichert, and L. W. Shive, *J. Am. Chem. Soc.*, 1976, 98, 4469.
 ³ M. H. Chisholm and F. A. Cotton, *Acc. Chem. Res.*, 1978, 11, 356.
 ⁴ M. H. Chisholm, *Transition Met. Chem.*, 1978, 3, 321.