990

Cedrenoid Sesquiterpenes.
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Synthesis of the (4-) Stork—Clarke

B-Diketone

By KENNETH E. STEVENS and PETER YATEs*
(Lash Miller Chemical Laboratories, University of Toronto, Ontario, Canada M5S 1A1)

Summary (+)-28,6,6-Trimethyltricyclo[5.3.1.0%-3]un-
decane-8,10-dione (6) has been synthesized from dimethyl
6,6-dimethyl-5-oxobicyclo[2.2.2]oct-2-ene-2,3-dicarb-
oxylate (8).

THE cedrenoid sesquiterpenes are characterized by the
tricyclo[5.3.1.0*-5]Jundecane skeleton, as in cedrene (1) and
cedrol (2).* They differ in their states of oxidation at a
variety of ring and substituent carbon atoms, as exemplified
by shellolic acid (3),? laccishellolic acid (4),® and «-pipitzol
(5).¢
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Stork and Clarke® were the first to achieve the synthesis
of a cedrenoid sesquiterpene and their synthesis of (2) was
followed by several other total syntheses of (1) and (2).%
The only more highly oxygenated cedrenoids that have
been synthesized are a-pipitzol (5) and its stereoisomer,
B-pipitzol.# We have undertaken a novel approach to the
synthesis of (2) that is designed to be applicable to the
eventual synthesis of many of the more highly oxygenated
cedrenoids, a feature that is not shared by most of the
previous syntheses of (1) and (2). We chose as our initial
goal the S-diketone (6), a key intermediate in the synthesis
of Stork and Clarke,? which they obtained by base catalysed
cyclization of the keto ester (7). This intermediate has the
potentiality of providing a route to cedrenoids bearing
oxygen at C-10 and C-15. We report now a synthesis of

(6) that is also potentially adaptable to the introduction of
substitution at C-12 and C-13, as in (3).

Hydrogenation of the Diels-Alder adduct’ of 6,6-di-
methylcyclohexa-2,4-dienone and dimethyl acetylenedi-
carboxylate gave (8).8f This on irradiation in aceto-
phenone as solvent and photosensitizer gave the oxa-di-or-
methane product® (9) (76%), m.p. 82—83 °C. Treatment
of (9) with lithium dimethylcuprate!® gave (10), m.p.
76-5—78-5 °C} It was expected that this homoconjugate
addition product would have the desired B-configuration of
the carbon bearing the entering methyl group as depicted
in (10),%° but this was only unambiguously established on
completion of the synthesis of (6). Demethoxycarbonyla-
tion of (10) with NaCl in hot, wet Me,SO gave (11) (74%,)
as a mobile oil.
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Treatment of (11) with lithium acetylide in tetrahydro-
furan (THF) at —75 °C gave (12) (619%), m.p. 95—96 °C;
the relative configuration at C-7 is assigned in the expecta-
tion that attack of the acetylide occurs at the S-face of (11).
Compound (12) was subjected to Rupe rearrangement (hot
HCO,H-H,S0,)*? to give (13) (309 ) as a mobile oil. At low
concentrations of H,SO, this is accompanied by a second
product (14); increase in the concentration of H,SO,
suppresses the formation of (14), but gives rise to increased
polymerization. Hydrogenation of (13) over platinum in
ethyl acetate gave (15) (809,) as a mobile oil, which is
considered to be the C-7 epimer of (7), in the expectation
that addition of hydrogen occurs at the S-face. Treatment
of (15) with potassium t-butoxide in t-butyl alcohol [con-
ditions that had been employed previously for the conver-

T Satisfactory elemental analytical and spectroscopic data were obtained for compounds (8)—(20), except (16), which was not

purified.

1 Compound (10) was accompanied by two bicyclo[3.2 1]Joctane derivatives as minor products, formed by reductive cleavage of the
cyclopropane ring; spectroscopic analysis shows that the yield of (10) was ca. 80 ;.
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sion of (7) into (6)%] gave a product in 919, yield, shown to
be (+)-(6) by direct spectroscopic comparison (i.r., mass,
1H and 3C n.m.r.) with the optically active 8-diketone (6)§
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The viability of this synthetic approach to the introduc-
tion of a carboxylic acid function at C-2 has been demon-
strated by treatment of (9) with lithium diphenylcuprate to
give (16) as an oil, which was not purified but was subjected
to demethoxycarbonylation as before to give (17), m.p.
125—127 °C, in 659, overall yield, which on ozonolysis in
aqueous acetic acid followed by oxidative work-up!® and
treatment with diazomethane gave (18), m.p. 63—65 °C, in
469, overall yield. Also, reaction of (9) with diethyl-
aluminium cyanide in toluene'* gave (19) (569%,) as a
crystalline solid, m.p. 135—137 °C, which on demethoxy-
carbonylation as before gave (20) (699%) as a viscous oil.
Treatment of (20) with methanolic sulphuric acid gave (18)
in 419, yield.§
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13C n.m.r. spectroscopic comparison of (4)-(6) and optically
active (6).
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§ We are greatly indebted to Professor Gilbert Stork for providing us with a generous sample of optically active (6), m.p. 202—204 °C.
After recrystallization from dioxan (4-)-(6) had m.p. 177-5—179 °C.

€ That (18) has the B-configuration assigned at C-2 has been established by the independent synthesis of its a-epimer.
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