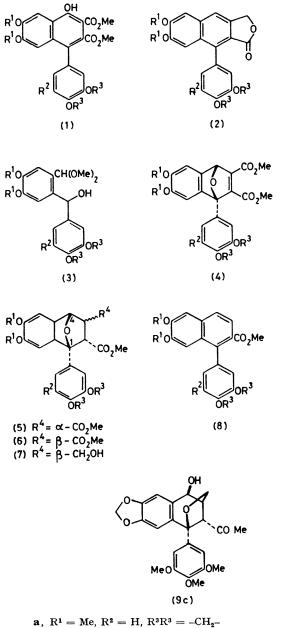
J.C.S. Снем. Сомм., 1980

## A Regiocontrolled Synthesis of Some Arylnaphthalide Lignans

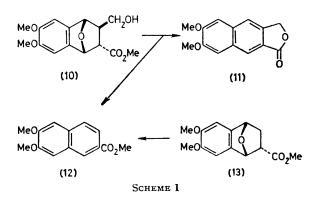

By S. OSMUND DE SILVA, CAROLE ST. DENIS, and RUSSELL RODRIGO\*

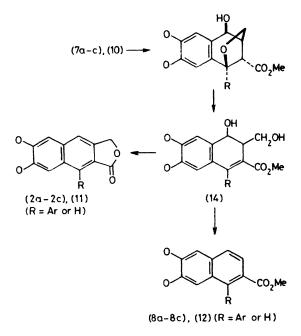
(Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3GI)

Summary Three arylnaphthalide ligands are synthesised by regiocontrolled transformations of Diels-Alder adducts

generated from dimethyl acetylenedicarboxylate and suitable isobenzofurans.

WE have recently described<sup>1</sup> a simple three-step procedure for the synthesis of several 4-hydroxy-1-arylnaphthalide lignans Regioselective reduction of the 3-ester unit in the intermediate diester (1) was achieved in that instance by the use of borane, and attributed to prior reaction of the reagent with the 4-hydroxy-group Many natural arylnaphthalide lignans do not contain a 4-hydroxy-substituent however, and the lack of methods for regiocontrolled generation of each of the two possible phthalides (perimethylene and pericarbonyl)<sup>2</sup> has been a perennial problem <sup>2</sup> We now provide a general solution to part of this problem and illustrate it with a synthesis of three naphthalide lignans of the perimethylene type (2a-c)





**b**,  $R^1R^1 = R^3R^3 = -CH_{2^-}, R^2 = H$ **c**,  $R^1R^1 = -CH_{2^-}, R^2 = OMe, R^3 = Me$ 

The hydroxyacetal<sup>1</sup> (3a) upon brief treatment on a steam bath with an excess of acetylene dicarboxylate and a catalytic quantity of glacial acetic acid was converted into the bicyclo-adduct (4a) [64%, m p 182–183 °C,  $\delta$  372 3 78, 3 85, 3 88 (s, 3H each), 6 02 (s, 3H,  $-\text{OCH}_2\text{O}-$  and 4-H), and 672-730 (m, 5H), M<sup>+</sup> 440, v(CHCl<sub>3</sub>) 1725 cm<sup>-1</sup>] Catalytic hydrogenation (Pd/C, ethyl acetate, 50 lb  $in^{-2}$ ) produced the *endo*-ester (5a) virtually quantitatively [m p 189 °C, δ 3 50, 3 52, 3 77 3 84 (s 3H each). 37-39 (2H, overlapped by OMe signals), 552 (d, 1H,  $J_{\rm 3\,4}$  4 0 Hz), 5 98 (s, 2H), and 6 6–7 5 (m, 5H),  $M^+$  442,  $\nu$ (CHCl<sub>3</sub>) 1735 cm<sup>-1</sup>] which was selectively epimerised at C-3 when heated under reflux with sodium acetate in dry methanol<sup>3</sup> to yield (90%) the trans-ester (6a) as a foam which resisted crystallisation [ $\delta$  3 22, (d, 1H 3-H,  $J_{2.8}$ 4 5 Hz), 3 46, 3 77, 3 80, 3 90 (s, 3H each), 4 19 (d, 1H, 2-H,  $J_{23}$  4 5 Hz), 5 68 (s, 1H), 6 00 (s, 2H), 6 57 (s, 1H), and 68-74 (m, 4H),  $M^+$  442,  $\nu$ (CHCl<sub>3</sub>) 1735 cm<sup>-1</sup>] The appearance of the bridgehead proton (4-H) now as a singlet and the shift of one ester methoxy-signal downfield to  $\delta$  3 77 identified the site of epimerisation (C-3) Our investigations thus far of this remarkably selective process seem to suggest that prolonged treatment with sodium acetatemethanol might well provide the 2-epimer instead as the thermodynamic product in some bicyclo-systems and thereby delineate an unambiguous route to the pericarbonyl lactones

Regiospecific reduction of the exo-ester unit at C-3 was accomplished with lithium triethylborohydride in dry tetrahydrofuran to provide the crystalline alcohol (7a)  $[78\%, m p 133 \degree C, \delta 1 33 (t, 1H, exchanges with D<sub>2</sub>O), 2 45$ (t of d, 1H,  $J_{23}$  4,  $J_{33a}$  7 0 Hz), 3 50, 3.78, 3 92 (s, 3H each), 3 7-4 0 (m, 2H, overlapped by OMe signals), 5 28 (s, 1H), 6 00 (s, 2H), and 6 60-7 27 (m, 5H), M<sup>+</sup> 414, v(CHCl<sub>3</sub>) 3500br and 1735 cm<sup>-1</sup>] Aromatisation and lactonisation of (7a) (trifluoroacetic acid-methylene chloride, room temperature) produced a quantitative yield of two products in equal proportions After separation by chromatography (silica) the slower-running component was identified as justicidin B (2a) by comparison of its properties with published data<sup>4</sup> Taiwanin C<sup>5</sup> (2b) and dehydroanhydropicropodophyllin<sup>6</sup> (2c) were prepared similarly through intermediates (3b)—(7b) and (3c)—(7c), respectively In every instance the second-faster-running component (8a-c) was found as a co-product of the final step

The precursor (7c) was used to study the formation of this product (8c) [m p 168 °C, δ 3 63 (s, 3H), 3 83 (s, 3H), 3 95 (s, 6H), 6 03 (s, 2H), 6 50 (s, 2H), 6 95 (s, 1H), 7 16 (s, 1H), and 7 73 (2H, collapsed AB, J 8 5 Hz), v(CHCl<sub>3</sub>) 1725 cm<sup>-1</sup>]





## SCHEME 2

and to elucidate its structure in the following manner. When the reaction was followed by t.l.c. the initial formation of a third compound was revealed. This compound was isolated and identified<sup>7</sup> as the methyleneoxy-bridged isomer (9c) which was in turn converted into (7c) and (8c) with acid. Furthermore, the C-3a dideuterio analogue of (7c) when aromatised similarly with acid provided the doubly deuteriated phthalide (2), (8c) containing no deuterium, and formaldehyde.<sup>8</sup> Conclusive evidence for structures (8a-c) was obtained by repeating the reaction with a 1-de-aryl system (10) prepared similarly from the corresponding trans-ester.<sup>9</sup> Again two products, (11) and (12), were obtained and the latter was identical with a sample prepared independently from the bridged ester  $(13)^9$  (Scheme 1).

Thus the acid-catalysed aromatisation of the bridged intermediates (7a-c) and (10) may be rationalised as in Scheme 2 with products (8a-c) and (12) arising from the cleavage of a 1,3-diol intermediate (14), a process not entirely without precedent.<sup>10</sup>

We thank the Natural Sciences and Engineering Research Council of Canada for support of this work.

(Received, 16th July 1980; Com. 772.)

<sup>1</sup>H.P. Plaumann, J. G. Smith, and R. Rodrigo, J. Chem. Soc., Chem. Commun., 1980, 354.

<sup>2</sup> For a recent review see D. C. Ayres in 'Chemistry of Lignans,' Andhra University Press, Waltair, Visakhapatnam 530 003 India, 1978.

<sup>3</sup> J. G. Smith, S. S. Welankiwar, B. S. Shantz, E. H. Lai, and N. G. Chu, J. Org. Chem., 1980, 45, 1817.

- <sup>4</sup> E. Block and R. Stevenson, J. Org. Chem., 1971, 36, 3453.
- <sup>5</sup> J. L. Holmes and R. Stevenson, J. Org. Chem., 1971, 36, 3450.

<sup>6</sup> R. D. Haworth and T. Richardson, J. Chem. Soc., 1936, 348; A. W. Schrecker and J. L. Hartwell, J. Am. Chem. Soc., 1952, 74, 5676.

<sup>7</sup> R. Rodrigo, J. Org. Chem., 1980, in the press.

- <sup>8</sup> L. E. Bricker and H. R. Johnson, *Analyt. Chem.*, 1945, 17, 400.
  <sup>9</sup> B. A. Keay, D. K. W. Lee, and R. Rodrigo, *Tetrahedron Lett.*, 1980, in the press.
  <sup>10</sup> T. E. Maggio and J. English, *J. Am. Chem. Soc.*, 1961, 83, 968.