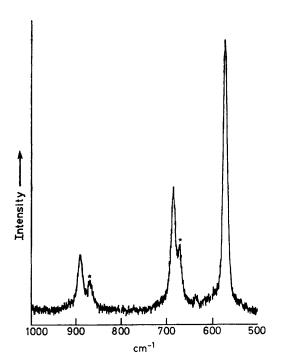
Synthesis and Spectroscopic Characterization of the S₃N⁻ Ion

By Josef Bojes and Tristram Chivers*
(Department of Chemistry, The University of Calgary, Calgary T2N 1N4 Alberta, Canada)

Summary The reaction of S_4N^- with triphenylphosphine in acetonitrile produces S_3N^- which reacts with NiCl₂ to give Ni(S_3N)₂, vibrational spectra of $S_3^*N^-$ (*N = 30% ¹⁵N) suggest an $^-S-N=S=S$ arrangement of atoms in the anion

Three binary sulphur–nitrogen amons have been structurally characterized the bicyclic cage, $S_4N_5^{-,1}$ the planar sixmembered ring, $S_3N_3^{-,2}$ and the planar cis–trans chain, $S_4N^{-\,3}$ We have found that the reaction of S_4N^- with triphenylphosphine in acetonitrile produces the S_3N^- amon We report here the synthesis and spectroscopic characterization of this new binary sulphur–nitrogen amon


When PPN+S₄N⁻ [0 500 mmol, PPN = $(Ph_3P)_2N$] is treated with triphenylphosphine (1·00 mmol)† in acetonitrile (10 ml) at 23 °C the deep blue solution immediately becomes orange. Slow addition of diethyl ether (40 ml) to the reaction mixture followed by cooling to -20 °C for 6 h produces orange crystals of PPN+S₃N⁻ (0·26 mmol, 52%)‡ Ph₄As+S₃N⁻ can be prepared in a similar manner. Removal of solvent from the filtrate followed by extraction with diethyl ether yields pure triphenylphosphine sulphide

The u v-vis spectrum of solutions of S_3N^- in CH_2Cl_2 shows a smooth absorption band at 465 nm but the solutions rapidly become dark blue owing to the formation of S_4N^- (λ_{max} ca 580 nm) ³ This conversion of S_3N^- into S_4N^- was also observed in the solid state during the preparation of KBr discs for the rotating Raman sample holder when the pressure exceeded 4×10^7 Pa

The vibrational spectra of S_3N^- are informative in comparison with the corresponding spectra of S_4N^- , which show bands at ca 890, 710, 590, and 565 cm⁻¹³ Since the strong bands at 590 and 565 do not exhibit satellites in the Raman spectrum of S_4*N^- (*N=30% ¹⁵N), they have been attributed to stretching vibrations of the unequal S–S bonds in this anion ³ The S_3N^- anion has bands at 893vs, 666s, and 564s cm⁻¹ in the 1r spectrum and at 894 m, 686s, and 574vs cm⁻¹ in the Raman spectrum. The former two bands show satellites owing to the presence of ¹⁵N in the Raman spectrum of S_3*N^- and are thus attributed to S–N vibrations while the very strong band at 574 cm⁻¹ remains as a single peak which can be assigned to an S–S vibration (see the Figure). Thus, in contrast with the well established branched structure

[†] In an attempt to determine the exact stoicheometry of the reaction a solution of Ph_3P in MeCN was titrated against a solution of $PPN^+S_4N^-$ in MeCN Taking the persistence of an orange colour as the end point values of the molar ratio in the range 1 27—1 45 1 were obtained We attribute the need to use an excess of Ph_3P to the slow reaction of S_3N^- with Ph_3P

[‡] Complete analytical data are in good agreement with this formula

Raman spectrum of $Ph_4As^+S_3^*N^-$ (*N = 30% 15N) obtained using 488 nm excitation on a pressed solid sample mounted on KBr in a 6 cm stainless steel ring which was rotated at ca 1000 rpm to prevent thermal decomposition Bands marked with an asterisk are not observed in the Raman spectrum of Ph₄As+S₃N-

 (D_{3h}) of the isoelectronic CS_3^{2-} ion, 4 the vibrational spectra of S₃N- suggest an unbranched arrangement of atoms, -S-N=S=S, consistent with the cleavage of one S-S bond in S_4N^- by triphenylphosphine 5

Transition-metal complexes of the type M(S₃N)₂ (M=N₁,⁶ Co,7 Pd,7 or Pt8) have been obtained in very low yields6,7 from the reactions of metal halides with S₄N₄ An X-ray structural determination of the palladium derivative (1) shows

that two bidentate cis-S₃N- ligands are bonded to the metal in this complex 9 Whether a cis or trans conformation is adopted in the free ion must await the results of an X-ray structural determination 10 It is noteworthy, however, that the reaction of PPN+S3N- with NiBr2 in MeCN at reflux produces N₁(S₃N)₂ with 1 r bands at 980m, 730s, 715vs, and 525m cm⁻¹ (cf ref 6)

In conclusion, the bidentate chelating ligand S₃N⁻ is readily prepared from S₄N⁻ and triphenylphosphine This synthesis should provide a convenient route for the study of transition-metal complexes of the SaN- anion

We thank the Natural Sciences and Engineering Research Council of Canada for financial support and Dr R Kydd for the measurement of Raman spectra

(Received, 18th June 1980, Com 663)

- W Flues, O J Scherer, J Weiss and G Wolmershauser Angew Chem, Int Ed Engl 1976 15, 379
 J Bojes and T Chivers, J Chem Soc, Chem Commun 1978, 391 J Bojes, T Chivers, W G Laidlaw, and M Trsic, J. Am Chem
- Soc, 1979, 101, 4517

 This chivers and R T Oakley, J Chem Soc Chem Commun, 1979, 752 T Chivers W G Laidlaw, R T Oakley, and M Trsic, J Am Chem Soc, 1980, 102, 5773

 G Gattow and W Behrendt 'Carbon Sulphides and Their Inorganic and Complex Chemistry,' ed A Senning, Georg Thieme, Stuttgart, 1977 p 167
- ⁵ Ab unito Hartree–Fock–Slater self consistent field calculations of cis- and trans- S_3N^- using the geometry found for S_4N^- 3 show the
- cos-conformation to be ca 20 kcal lower in energy W G Laidlaw, personal communication 6 T S Piper J Am Chem Soc , 1958 80 30 reports the preparation of 9 mg of Ni(S₃N)₂ from S₄N₄ (20 g) and NiCl₂ (25 g) 7 J Weiss and U Thewalt Z Anorg Allg Chem , 1966 346 234 report the preparation of 340 mg of Pd(S₃N)₂ from S₄N₄ (21 g) and
- PdCl₂ (17 g)

 B D T Haworth and G Y Lin, J Inorg Nucl Chem, 1977 39 1838 identify Pt(S₃N) on the basis of the ir spectrum I S Butler and T Sawai Can J Chem, 1977, 55 3838 report mass spectroscopic evidence for the presence of Pt(S₃N)₂ in a mixture

 B J Weiss and H S Neubert, Z Naturforsch, Teil B, 1966, 21 286

 Attempts to determine the single crystal X-ray structure of PPN+S₃N- and Ph₄As+S₃N- have failed owing to disorder problems,