Novel, Direct Amination of Anthraquinone by Rhodium(1) Complexes

By Katsuhisa Mita, Takamichi Yamagishi, and Mitsuhiko Hida*
(Department of Industrial Chemistry, Faculty of Technology, Tokyo Metropolitan University, Fukazawa, Setagaya-ku, Tokyo 158, Japan)

Summary In the presence of certain rhodium(I) complexes, anthraquinone was found to react with amines to give the 1-alkylaminoanthraquinones, along with small amounts of the 1,4-bis(alkylamino)anthraquinones, this direct amination characteristically occurs only at the α -position of anthraquinone

While studying the Ullmann condensation reaction of halogenoanthraquinones, we found a novel reaction in which anthraquinone (1) was directly aminated in the presence of certain rhodium(1) complexes and n-butylamine to give 1-n-butylaminoanthraquinone (2a) along with only a small amount of 1,4-bis(n-butylamino)anthraquinone (3a) Recently cobalt- or copper-assisted amination of

1-amino-anthraquinone to give 1-amino-4-n-butylamino-anthraquinone has been reported by Kitao and his co-workers ² Unsubstituted anthraquinone, however, gave no aminated product under their reaction conditions

We report here a novel, direct amination of (1) In a typical experiment, a mixture of (1) $(5 \times 10^{-2} \, \mathrm{mol} \, l^{-1})$, n-butylamine $(2.6 \, \mathrm{mol} \, l^{-1})$, and a rhodium(I) complex (Rh $5 \times 10^{-3} \, \mathrm{g}$ atom l^{-1}) in diglyme (7.5 ml) was refluxed in air for 30 h after refluxing under N₂ for 3 h. The products were separated by column chromatography on silica gel using benzene as eluant and identified by comparison with authentic samples. In these reactions, amination occurred only at the α -position of (1) Disubstituted products, such as 1,5- and 1,4-bis(n-butyl-

Table 1. The direct amination of anthraquinone with n-butylamine using various rhodium(1) complexes.

			Reaction	time/h	Yie	ld/ % ³
Run	Rhodium complex	Rh/(1)	Under N_2	In air	(2a)	(3a)
1		0	0	34	0	0
2	RhCl∙3H₂O	0.10	3	36	0	0
3	$[RhCl(PPh_3)_2]_2$	0.11	30	0	7	0.1
4	,,	0.11	0	30	39	2
5	**	0.11	3	30	136	26^{b}
6	$[RhCl(C_2H_4)_2]_2$	0.10	30	0	2	0
7	"	0.11	3	30	100	18
8	$[RhCl(C_2H_4)_2]_2 + dpe^c$	0.11	0	30	48	9
9	"	0.11	3	30	135	$25^{\rm b}$
10	$[RhCl(cod)]_2$	0.11	3	30	76	8
11	$RhCl(PPh_3)_3$	0.10	0	30	9	1
12	"	0.10	3	30	64	5
13	$RhCl(cod)(PPh_3)$	0.11	3	30	18	trace
14	$RhCl(CO)(PPh_3)_2$	0.10	3	30	12	0.4

^a Yield based on rhodium. ^b A trace of 1,5-bis(n-butylamino)anthraquinone was also formed. ^c dpe/Rh 1·0.

a; R = NHBuⁿ
b; R = NHBu^s
c; R = NHBu^t
d; R = NH(cyclo-C₆H₁₁)
e; R = NHCH₂Ph
f; R = NHSO₂C₆H₄Me-p
g; R = NHCH₂CH₂OH
h; R = NBuⁿ₂
i; R = piperidin-1-yl
j; R = N(Me)CH₂Ph

amino)anthraquinone, were also observed in a small amount in some cases.†

Results of the amination in diglyme and n-butylamine using various rhodium complexes are summarized in Table 1. The yields are based on rhodium in order to estimate whether the metal complex could recycle as a catalyst. The amination does not proceed at all in the absence of rhodium(I) complexes (runs 1 and 2). The yields of reactions under N_2 are very low, even in the presence of rhodium(I) complexes (runs 3 and 6), showing that oxygen is necessary for this amination system. It is of interest, however, that refluxing under N_2 , before the reaction in air, is favourable for the reaction (compare runs 4 and 5,

8 and 9, and 11 and 12). Among the rhodium(1) complexes examined the dimeric complexes, such as [RhCl(PPh₃)₂]₂, $[RhCl(C_2H_4)_2]_2$ 1,2-bis(diphenyl- $[RhCl(C_2H_4)_2]_2,$ phosphino)ethane (dpe) (dpe/Rh 1·0), and [RhCl(cod)]₂ (cod = cycloocta-1,5-diene), are more effective for the amination than are RhCl(PPh₃)₃, RhCl(cod)(PPh₃), and $RhCl(CO)(PPh_3)_2$ (compare runs 5, 7, 9, and 10 and 12, 13, and 14). This seems to show that the formation of a co-ordinatively unsaturated monomeric rhodium(I) complex plays an important role in the production of active species. The use of $[RhCl(PPh_3)_2]_2$ or $[RhCl(C_2H_4)_2]_2 + dpe$ (dpe/Rh 1.0) gave yields of (2) > 100%, based on rhodium (runs 5 and 9). This suggests that the rhodium(I) complexes can recycle as a catalyst, although inefficiently.

Table 2. Direct amination of anthraquinone with various amines.^a

		Yield/%b		
Amine	$\mathrm{p}K_{\mathrm{BH}^{+}}$	(2)	(3)	
BunNH2	10.64	a; 114	10	
Bu ^s NH ₂	10.56	b ; 74	0.8	
Bu ^t NH ₂ c	10.45	c; 20	trace	
cyclo-C ₆ H ₁₁ NH ₂	10.68	d; 141	3	
PhCH ₂ NH ₂	9.35	e; 4d	0	
p-MeC ₆ H ₄ SO ₂ NH ₂ e		f ; 0	0	
HOCH, CH, NH,	9.50	g ; 0	0	
Bu ⁿ 2NH	11.31	h ; trace	0	
Piperidine	11.12	i; 82	0	
$\hat{PhCH_2}(Me)NH$	9.58	j ; 3	0	

 a Reactions were carried out at 110 °C in air for 30 h after reaction at 110 °C under $\rm N_2$ for 3 h using [RhCl(PPh_3)_2]_2. b Yields based on the rhodium. c Reaction was carried out under reflux (ca. 100 °C). d 14% of 1-aminoanthraquinone was formed. e Concentration of amide was 1·3 mol l $^{-1}$.

The results given in Table 2 suggest that the stronger the basicity and the smaller the steric hindrance of the amine, the higher is the yield. In the cases of n-butylamine and cyclohexylamine, the yield based on rhodium exceeds 100%.

(Received, 14th July 1980; Com. 763.)

[†] A trace amount of 1,5-bis(n-butylamino)anthraquinone was formed when the yield of (2a) was high.

¹ S. Arai, T. Yamagishi, and M. Hida, Bull. Chem. Soc. Jpn., 1977, 50, 547; S. Arai, M. Hida, T. Yamagishi, and S. Ototake, *ibid.*, p. 2982; S. Arai, M. Hida, and T. Yamagishi, *ibid.*, 1978, 51, 277; S. Arai, A. Tanaka, M. Hida, and T. Yamagishi, *ibid.*, 1979, 52, 1731.

² K. Yoshida, M. Matsuoka, T. Ueyama, Y. Yamashita, and T. Kitao, *Chem. Lett.*, 1978, 765; K. Yoshida, M. Matsuoka, and T. Kitao, *ibid.*, 1978, 1317.