The Role of the Triplet State in Insertion Reactions of Silylenes

By Thomas N. Bell*

(Department of Chemistry, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6)

and KATHRYN A PERKINS and PETER G PERKINS

(Departure of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland)

Summary The allowed or forbidden nature of silylene insertion reactions is considered on symmetry grounds

together with the consequent energy requirement for such reactions $% \left({{{\bf{r}}_{{\rm{s}}}}_{{\rm{s}}}} \right)$

In recent work¹ we have constructed a theoretical method for calculating internally consistent heats of formation and bond dissociation energies for di-, tri- and tetra-substituted silicon species.

In the Figure the calculated ΔH_t values (for SiH_x) are plotted vs. x. Of particular significance is the fact that a smooth curve pertains to x = 0,1,3,4 whereas ΔH_t^* for the singlet species SiH_2 is some 50 kJ mol⁻¹ more stable than predicted by the smooth curve.

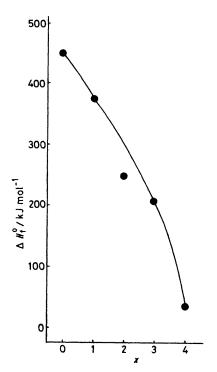


FIGURE. Plot of heats of formation of $SiH_x vs. x$.

The ¹A₁ ground and the first excited ³B₁ states of SiH₂ have been estimated by different authors^{2,3} to differ by ≤ 59 and 42 kJ mol⁻¹. Thus, we opine that the difference of ca. 50 kJ mol⁻¹ between the calculated point and that estimated from the smooth curve at x = 2 corresponds to the ${}^{1}A_{1} - {}^{3}B_{1}$ separation for SiH₂.

By an exactly analogous argument we found the singlettriplet separations to be $ca. 100 \text{ kJ mol}^{-1}$ for SiMe₂ and ca. 115 kJ mol⁻¹ for SiCl₂.

These conclusions have an important bearing on the interpretation of current kinetic work in silvlene chemistry. Thus, Davidson and Mathews,⁴ from decomposition studies on Si₂Me₅H, estimate $\Delta H_{1}(SiMe_{2})$ ca. 68 kJ mol⁻¹, whereas Strausz and Neudorfl's⁵ decomposition studies of Me₂SiH₂, yield ΔH_t^{\bullet} (SiMe₂) ca. 176 kJ mol⁻¹. These experimentally estimated values differ by ca. 108 kJ mol⁻¹, close to our calculated triplet-singlet separation for SiMe₂ ca. 100 kJ

mol⁻¹. We believe this experimental difference is due to the energy consequence of the symmetry allowed or forbidden nature of the two reactions.

In this communication we advance the basis for a general symmetry theory of silvlene insertions (the reverse of silane decomposition), to account for the observed allowed and forbidden nature of such reactions.

For simplicity we first consider the reaction $SiH_2 + H_2 \rightarrow$ SiH₄, which requires electrons to be transferred from the donor SiH₂ species into the antibonding molecular orbital of H₂. The latter is antisymmetric with respect to rotation about the reaction co-ordinate; however, our SCF calculation shows the highest donor bonding level of SiH₂ is symmetric to this operation. Hence reaction of ${}^{1}A_{1}$ SiH₂ with H₂ is symmetry-forbidden.

The lowest antibonding orbital of SiH₂ is substantially the non-bonding p_{π} orbital localised on Si which is occupied in the ³B₁ state; this matches in symmetry the antibonding H₂ orbital. Hence we suggest that the singlet-triplet excitation energy of SiH₂, at least, must be supplied as activation energy for the reaction to take place.

Conversely, for the decomposition of silane into SiH₂ and H₂, the activation energy must overcome the enthalpy of reaction plus the triplet excitation energy of SiH₂ in the immediate dissociation products.

Our calculations show that for both SiMe₂ and SiCl₂ the symmetry properties of both the highest bonding and lowest antibonding molecular orbitals are similar to those for SiH₂. Hence insertion of SiMe₂ and SiCl₂ into H₂ will again be limited by symmetry and require excitation to the ³B₁ state.

The same effect should obtain for all symmetrical subtrates in which the lowest-lying antibonding orbital is antisymmetric across the central bond. Thus insertion of SiX₂ into Si₂H₆ and Si₂Me₆ will be forbidden, the lowest unoccupied orbital between the two silicon atoms being strongly antibonding.

Allowed silvlene insertions will proceed without excitation energy when the antibonding orbital relating to the bond into which the insertion occurs is symmetric with respect to the reaction co-ordinate.

Thus, in the process, $SiH_2 + SiH_4 \rightarrow Si_2H_6$, where the reaction is occurring along a path of C_{2v} symmetry, one orbital of the first degenerate set of antibonding molecular orbitals of SiH₄ corresponds to the highest bonding orbital of SiH₂, and the reaction is symmetry-allowed. Direct calculation of the reaction co-ordinate⁶ shows that the reaction proceeds without activation energy.

The symmetry considerations above allow an explanation for the apparent discrepancy for the values of ΔH_t^{\bullet} (SiMe₂) determined from the decomposition of Me₂SiH₂ and Si₂Me₅H.

(Received, 23rd June 1980; Com. 684.)

- ¹ T. N. Bell, K. A. Perkins, and P. G. Perkins, J. Chem. Soc., Faraday Trans. 1, accepted for publication.

- K. Bedan, E. Herbst, and F. O'Lorins, J. Chem. Soc., Fundary Trans. 1, accepted
 A. Kasdan, E. Herbst, and W. C. Lineberger, J. Chem. Phys., 1975, 62, 541.
 J. H. Meadows and H. F. Schaefer, III, J. Am. Chem. Soc., 1976, 98, 4383.
 I. M. T. Davidson and J. J. Matthews, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 1403.
 F. S. Neudorff and O. P. Strausz, J. Phys. Chem., 1978, 82, 241.
 K. A. Berking and P. C. Borking, unpublished work.
- ⁶ K. A. Perkins and P. G. Perkins, unpublished work.
- ⁷ T. N. Bell and P. G. Perkins, J. Phys. Chem., 1977, 81, 2102.