Nucleophilic Displacement of 7α-Methoxy-7β-amino-1-oxacephem Derivatives: Synthesis of 7α-Substituted 1-Oxacephem Antibiotics

By YUJI SENDO* and MITSURU YOSHIOKA

(Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan)

Summary Acid-catalysed displacement of 7α -methoxy- 7β -amino-l-oxacephem (1) with nucleophiles gave the 7α -substituted- 7β -amino compounds (5-8), which were converted into the antibiotics (13-16).

THE 7α -methoxy- 7β -amino-l-oxacephem derivative (1), a key intermediate in syntheses of the clinically useful 7α -methoxy-l-oxacephem antibiotic [disodium salt of (12),

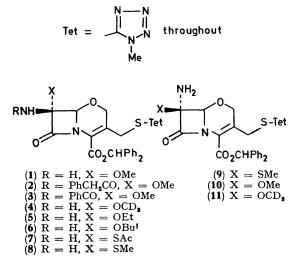
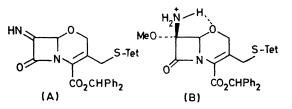
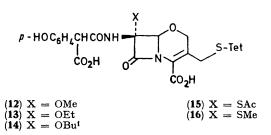
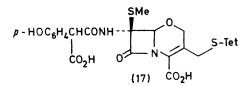

code number 6059-S],¹ has been prepared by deacylation of the amide precursors $(2)^2$ and $(3)^3$ under conventional conditions (PCl₅-pyridine; MeOH). The observed formation of little of the 7β -methoxy epimer (10), in contrast to the predominant formation of 7β -methoxy- 7α -amino derivatives in the deacylation of cephalosporins,⁴ has been interpreted by assuming that acid-catalysed epimerisation at C-7 is very slow in the l-oxa compound (1).²

TABLE. Displacements of the methoxy-amine (1) (at room temperature).


Reagent	Solvent	Time	Product	Yield/%	M.p./°C
HCl-EtOH	CH ₂ Cl ₂ -EtOH	45 min	(5)	76.1	157-160
HCl-Bu ¹ OH	CH ₂ Cl ₂ -Bu ¹ OH	45 min	(6)	72.7	149 - 152
HCl_AcSH	CH ₂ Cl ₂	16 h	(7)	80a	
HCl-MeSH	CH ₂ Cl ₂ -MeOH	2 h	(8)	84·8 ^b	165 - 171

^a Crude yield of a single isomer. ^b Yield of a crystalline product containing about 10% of the 7β -methylthio epimer. After acylation, the products from these two isomers could be separated.


We found that the $[{}^{2}H_{3}]$ methoxy amine (4) was obtained in 65% yield on deacylation of the amide (3) using $[{}^{2}H_{4}]$ methanol in place of methanol (PCl₅-pyridine, 25 °C; CD₃OD, 0 °C, 2 h; Et₂NH, -20 °C) and that acid-catalysed alcoholysis of (1) [CD₃OD-CDCl₃ (2:7), HCl (0·1 equiv.), 25 °C, 1 h] gave a 5:1 mixture of (4) and (11). These results clearly indicate that there is a rapid, acid-catalysed epimerisation (1)=(10) via intermediate (A) under the conventional deacylation conditions, and that the 7 α methoxy epimer (1) is the thermodynamically more stable of the two. This stability can be attributed to hydrogenbonding, as shown in structure (B), which would be much weaker in the l-thia congener.


This finding led us to examine a new method for preparing biologically interesting 7α -substituted l-oxacephems by performing acid-catalysed nucleophilic displacements of the

abundant material (1) via the imine (A). The displacement reactions proceeded smoothly to give 7α -substituted 7β amino derivatives in good yields (Table). The stereochemical assignments are based on an analogy with the methoxy-amine (1) for the alkoxy-amines (5) and (6), and on favourable α -side attack^{5,6} for the thio-products (7) and (8) which are considered to be kinetically controlled products.

The 7β -amines (5)—(8) were converted into the corresponding 7α -substituted 1-oxacephem antibiotics (13) (50%), (14) (60%), (15) (40%), and (16) (58%) by the known two-step process [4-(p-MeOC₆H₄CH₂O)C₆H₄CH(CO₂CH₂C₆H₄OMe-p)COCl, pyridine, CH₂Cl₂, -20 °C; CF₃CO₂H, anisole, CH₂Cl₂, O °C]. The antibacterial activities of products (13), (14), (15), and (16) were found to be approximately 1/10, 1/100, 1/200, and 1/300, respectively, of the activity of (12).

Compound (17), derived from the minor epimer (9) (separated after the acylation), did not show an *in vitro* anti-bacterial activity at a concentration of $100 \,\mu g/ml$.

We thank Dr. T. Yoshida of our laboratories for the antibacterial assays.

(Received, 10th July 1980; Com. 752.)

¹ M. Narisada, T. Yoshida, H. Onoue, M. Ohtani, T. Okada, T. Tsuji, I. Kikkawa, N. Haga, H. Satoh, H. Itani, and W. Nagata, J. Med. Chem., 1979, 22, 757. ² S. Uyeo, I. Kikkawa, Y. Hamashima, H. Ona, Y. Nishitani, K. Okada, T. Kubota, K. Ishikura, Y. Ide, K. Nakano, and W. Nagata, J. Am. Chem. 53, 1979. 101. 4402.

² S. Uyeo, I. Kikkawa, Y. Hamashima, H. Ona, Y. Nishitani, K. Okada, I. Kubota, K. Isnikura, Y. Ide, K. Nakano, and W. Nagata, J. Am. Chem. Soc., 1979, 101, 4403.
³ M. Yoshioka, T. Tsuji, S. Uyeo, S. Yamamoto, T. Aoki, Y. Nishitani, S. Mori, H. Satoh, Y. Hamada, H. Ishitobi, and W. Nagata,

³ M. Yoshioka, T. Tsuji, S. Uyeo, S. Yamamoto, T. Aoki, Y. Nishitani, S. Mori, H. Saton, Y. Hamada, H. Ishitobi, and W. Nagata, *Tetrahedron Lett.*, 1979, 4327. ⁴ W. H. W. Lunn, R. W. Burchfield, T. K. Elzey, and E. V. Mason, *Tetrahedron Lett.*, 1974, 1307.

⁶ W. A. Spitzer and T. Goodson, *Tetrahedron Lett.*, 1973, 273.

⁶ R. A. Firestone, N. Schelechon, D. B. R. Johnston, and B. G. Christensen, Tetrahedron Lett., 1972, 375.