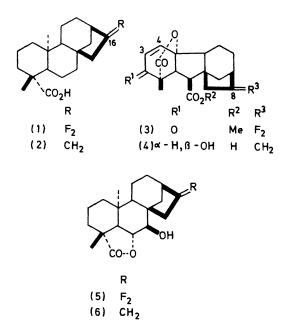
Production of *gem*-Difluoronor-derivatives of Gibberellin A₇ and 7-Hydroxykaurenolide by *Gibberella fujikuroi*

By BRIAN E. CROSS* and PAOLINO FILIPPONE (Department of Organic Chemistry, The University, Leeds LS2 9]T)


Summary ent-16,16-Difluoro-17-norkauranoic acid (1) has been fed to fermentations of Gibberella fujikuroi in the presence of AMO-1618, and the products have been shown to include 10β -carboxy-8,8-difluoro-1 β -methyl-2-oxogibb-3-ene-1 α ,4a α -carbolactone (3) (a derivative of gibberellin A₇) and 16,16-difluoro-7 β -hydroxy-17-norkauranolide (5).

In earlier work¹⁻⁴ fluorinated analogues of biosynthetic precursors of the gibberellins have been fed to fermentations of *G. fujikuroi*. Two of these precursors were transformed into novel gibberellins and related metabolites,^{1,2} whilst a third acted as an enzyme inhibitor³ in the same biological system.

In continuation of these studies ent-16, 16-difluoro-17norkauranoic acid (1) has been prepared.⁵ In the latter, unlike the natural biosynthetic precursor kaurenoic acid (2),⁶ the terminal methylene group is absent and C-16 is sp³, rather than sp², hybridised.

Addition of the difluoro-acid (1) (40 mg l^{-1}) to a stirred fermentation⁴ of *G. fujikuroi*, in the presence of AMO-1618 (10 mg l^{-1}), which blocks^{2,7} the biosynthesis of diterpenoids by the fungus, followed by harvesting and work-up in the usual way,^{1,4} gave crude acidic and neutral products. The former were chromatographed on a Kieselgel column and the fractions were methylated with diazomethane and purified by multi-dip p.l.c. using the methyl esters of authentic gibberellins as markers.

Material recovered from a spot with an R_F similar to that of the methyl ester of gibberellin A_9 gave a gum (5–10 mg per 4 l) shown by high resolution mass spectroscopy to have the formula $C_{19}H_{20}F_2O_5$. Its ¹H and ¹⁹F n.m.r. spectra [δ 1·25 (s, 1 β -Me), 2·84 (d, J 10 Hz, 10-H), 3·35 (d, J 10 Hz, 10a-H), 3·77 (s, OMe), 6·07 (d, J 9 Hz, 3-H), and 7·28 (d, J 9 Hz, 4-H); ϕ^* 102·0 (dm, J ca. 235 Hz, 7-F) and 85·1

(dm, J ca. 229 Hz, 7-F)][†] showed that it had structure (3), *i.e.* that it is a derivative of gibberellin A_7 (4). This structure was confirmed by its u.v. (λ_{max} 232 nm, ϵ ca. 4000) and i.r. (ν_{max} 1785, 1734, and 1695 cm⁻¹) spectra which were very similar to those of other gibberellins with the same structure of ring A.⁸

Purification by multi-dip p.l.c. of the neutral products afforded the difluoro-7-hydroxy-17-norkauranolide (ca.

[†] The ¹⁹F n.m.r. spectrum of methyl ent-16,16-diffuoro-17-norkauranoate showed ϕ^* 84.68 (2 × dd, J 230 and 16 Hz, 16-F) and 109.47 (dm, J 230 Hz, 16-F).

5 mg per 4 l) (5), whose ¹H n.m.r. spectrum closely resembled that of the normal fungal metabolite, 7-hydroxykaurenolide (6),⁹ except for the absence of the $17-H_2$ protons. Its ¹⁹F n.m.r. spectrum showed ϕ^* 99.28 (dm, J 226 Hz) and 84.36 (dm, J 226 Hz).†

Thus, the enzyme systems in the two main biosynthetic pathways⁶ in G. fujikuroi, viz. to the gibberellins and the kaurenolides, are both capable of utilising the difluoro-acid (1) as 'starting material' despite the absence of the terminal

methylene group. It is also of interest that the gibberellin A_7 analogue (3) does not possess the commonly found hydroxy-group at position 2, but has undergone an 'unnatural' oxidation to give a 2-keto-group.

We thank the S.R.C. for a research grant and Drs. P. R. Brook and A. Crawshaw for determining the n.m.r. spectra on a Jeol FX90Q instrument.

(Received, 21st August 1980; Com. 920.)

- J. H. Bateson and B. E. Cross, J. Chem. Soc., Perkin Trans. 1, 1974, 1131.
 B. E. Cross and A. Erasmuson, J. Chem. Soc., Chem. Commun., 1978, 1013.
 K. Boulton and B. E. Cross, J. Chem. Soc., Perkin Trans. 1, in the press.
 R. E. Banks, J. H. Bateson, B. E. Cross, and A. Erasmuson, J. Chem. Res., 1980, (S) 46; (M) 0801.
 B. E. Cross, A. Erasmuson, and P. Filippone, J. Chem. Soc., Perkin Trans. 1, in the press.
 P. Hedden I. MacMillan, and B. O. Phinney Annu. Rev. Plant Physiol. 1978 29 149
- ⁶ P. Hedden, J. MacMillan, and B. O. Phinney, Annu. Rev. Plant Physiol., 1978, **29**, 149. ⁷ B. E. Cross and P. L. Myers, Phytochemistry, 1969, **8**, 79.

- ⁸ B. E. Cross, J. Chem. Soc., 1960, 3022.
 ⁹ B. E. Cross, J. R. Hanson, and R. H. B. Galt, J. Chem. Soc., 1963, 2944; J. R. Hanson, Tetrahedron, 1966, 22, 1701.