Synthesis of Methanol and Derived Compounds by Homogeneous Fischer-Tropsch Type Reactions†

By Romeu J. Daroda, J. Richard Blackborow, and Geoffrey Wilkinson* (Chemistry Department, Imperial College of Science and Technology, London SW7 2AY)

Summary Reduction of CO by H₂ using carbonyls of Fe, Ru, and Os in 2-methoxyethanol below 200 °C and 200 atm gives dimethyl ether and diethyl ether (Fe), methanol and acetone (Ru), and methanol, methyl formate, acetone, and hydroxyethyl formate (Os); catalytic cycles are proposed.

HYDROGENATION of CO at 225—275 °C and 1300 atm in tetrahydrofuran using Ru(acac)₃ (acacH = acetylacetone) as catalyst precursor gives methanol and methyl formate.¹

In glyme solvents² using Fe(CO)₅, Ru₃(CO)₁₂, and Os₃(CO)₁₂ little gas is taken up at 200 °C, 300 atm, but in 2-methoxyethanol appreciable rates, in the order Ru > Os > Fe, are obtained (see Table). Thus, for ruthenium at 180 °C, 180 atm, CO: $\rm H_2 = 1:2$, methanol is formed with ca. 45% selectivity at a conversion rate of about $\rm 1\cdot 9\times 10^{-3}$ (mol CO) (g atom Ru)⁻¹ s⁻¹. Use of D₂ confirms that CD₃OD is produced by direct reduction of CO, but that there is also, as before,² considerable solvent reaction, bis-(2-methoxyethoxy)methane, (MeOCH₂CH₂O)₂CH₂, being the major product.

The iron and ruthenium solutions studied immediately after cooling and opening the reaction show no terminal or bridging CO stretches in the i.r., but only a strong band at 1640 cm⁻¹ or 1725 cm⁻¹, respectively, which we ascribe to Fe-C(:O)-OR and Ru⁻-C(:O)-O(H)(R) groups. On stan-

Fe-C(:O)-OR and Ru⁻-C(:O)-O(H)(R) groups. On standing bands due to Fe(CO)₅ or Ru(CO)₅ and Ru₃(CO)₁₂ appear at the expense of the 1640 and 1725 cm⁻¹ bands and, simultaneously, what appear to be Fe and Ru alkoxide gels precipitate. Although it was not commented upon, the 1725 cm⁻¹ band has been previously observed in Fischer-Tropsch reactions. The product mixture, mostly polymethylene, made over a solid ruthenium oxide catalyst,³ shows bands due to Ru-CO at 2080 and 2000 cm⁻¹ and a strong 1725 cm⁻¹ band.

Solutions of $\mathrm{Ru_3(CO)_{12}}$ in 2-methoxyethanol under only CO at 100 atm, 170 °C, for 24 h, produce $\mathrm{CO_2}$ and organic products, mostly acetates, but the solution again has a band at 1725 cm⁻¹ (no CO stretches) and again gives an alkoxide gel.

In hydroxy-glymes we then evidently have a reaction (1) similar to the water gas shift reaction⁴ and the attack of alcohols on metal carbonyl cations.⁵

The carbonyls of V, Mn, Co, Rh, Ru, and Os all give solutions with a $1725~\rm cm^{-1}$ band, while Fe and Cr solutions have bands at ca. $1640~\rm cm^{-1}$; the latter form carbonyls much more slowly. Only for osmium are hydrido-species clearly observed $[H_2Os(CO)_4$ and $H_2Os_2(CO)_8]$, but the $^{13}C\{^1H\}$ n.m.r. spectra of the ruthenium catalyst solutions show weak doublet peaks due to CH_3 groups that are coupled to H outside the range of the decoupler $(0-10~\rm p.p.m.)$ while undecoupled spectra have a quartet of doublets.

The reduction of CO by H_2 in all the carbonyl systems depends, we believe, on the stability, under operating conditions in the autoclave, of oxygen co-ordinated com-

FIGURE. Catalytic cycles for synthesis of methanol and acetone using binuclear ruthenium complexes. Co-ordinated solvent and CO omitted. Hydrogen shifts are always β . Negligible amounts of CO₂ and CH₄ are formed.

TABLE Catalytic activity of Fe, Ru, and Os carbonyls in 2-methoxyethanol

Metal carbonyl	Time h	CO:H ₂ ratio	Pressure /atm	Temp /°C	Conversion ^a (%)	Reduction products (%)b
Fe(CO) ₅	24	1.1	150	160	20	Et ₂ O (48), Me ₂ O (36), Me ₂ CO (6)
Ru ₃ (CO) ₁₂	48	1:15	180	150	50	$MeOH$ (40), Me_2CO (30), HCO_2Me (5), Me_2O (2)
	48	1.2	180	180	60	$MeOH (45), Me_2O (6), HCO_2Me (2), Me_2CO (4)$
Os ₃ (CO) ₁₂	48	1:1	180	190	40	MeOH (30), Me ₂ CO (20), HCO ₂ Me (10), HCO ₃ Et (6)
	48	1:2	180	190	55	MeOH (40), HCO ₂ Me (15), Me ₃ CO (5)

a From gas uptake b Using D₂ in MeOCH₂CH₂OD (for ruthenium) we obtain CD₃OD (13C{1H} 49 4 p p m , septet)

plexes and this is why glymes and alkoxy-glymes are catalytic systems oxygen co-ordination of the metal is critical^{6,7} and indeed, the most active Fischer-Tropsch heterogeneous catalysts are oxide systems 8

Two cycles leading respectively to methanol and acetone are shown (Figure), although binuclear species are used. similar cycles with mononuclear species can be devised

(Received, 18th July 1980, Com 782)

- ¹ J S Bradley, J Am Chem Soc, 1979, 98, 7419

 ² R Daroda, R Blackborow, and G Wilkinson, preceding communication

 ³ H Pichler and B Firnhaber, Brennstoff Chem, 1963 44, 33

 ⁴ C-H Chenger, D E Hendriksen, and R Eisenberg, J Am Chem Soc, 1977, 99, 2741, C Ungermann, V Landis, S A Moya, H Cohen, H Walker, R G Pearson R G Rinker, and P C Ford, abid, 1979, 101, 5922

 - L Malatesta, G Caglio, and M Angoletta J Chem Soc, 1965, 6975
 W Keminsky, J Kopf, H Sinn and H J Vollmer, Angew Chem, Int. Ed. Engl., 1976, 15, 630
 J R M Kress, M J M Russell M G Wesolak, and J A Osborn, J Chem Soc, Chem Commun, 1980, 431
 H H Storch, N Columbic, and R B Anderson, 'The Fischer-Tropsch and Related Synthesis,' Wiley, New York, 1951