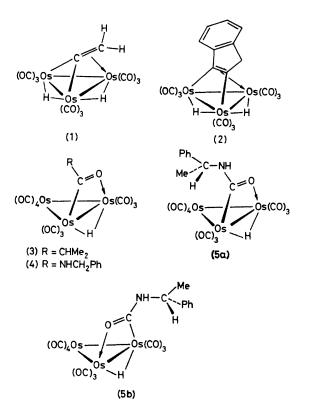
Chiral Co-ordination of Bridging Formamido-ligands in Clusters of Type [HOs₃(CO)₁₀(μ-RNHCO)]

By Alejandro J Arce and Antony J Deeming


(Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ)

Summary Enantiomers of $[HOs_3(CO)_{10}(\mu\text{-PhCH}_2\text{NHCO})]$ interconvert slowly on an n m r time-scale and diastereomers of $[HOs_3(CO)_{10}(\mu\text{-PhCHMeNHCO})]$ have been separated by tlc and characterised by their ¹H n m r and c d spectra

CLUSTERS may be chiral when different metal atoms form the skeleton, as in [FeCoMoS(C_5H_5)(CO)₈] which has recently been resolved ¹ However, many clusters are chiral because of the geometry of attachment of ligands which are themselves achiral, but in many cases fluxionality prevents resolution For example, the chiral cluster [H₂Os₃(CO)₈-(C:CH₂)] (1) has a time-averaged plane of symmetry resulting from a rapid hydride migration ² Hydride migration cannot interconvert the enantiomers of [H₂Os₃(CO)₈-(μ^3 -indene)] (2), but rapid rotation and flipping of the μ^3 -ligand relative to the metal triangle leads to n m r coalescences and time-averaged planes of symmetry through the organic ligand and the cluster as a whole ³ Clearly, before attempting resolution such fluxionality must be absent

The cluster $[HOs_3(CO)_{10}(Me_2CHCO)]$ (3) gives two sharp Me doublets in the ¹H n m r spectrum up to 120 °C⁴ and a rough extrapolation from a rate of enantiomerisation of $<1 s^{-1}$ at this temperature suggests that resolution of such clusters at room temperature should be feasible The related compound $[HOs_3(CO)_{10}(\mu\text{-PhCH}_2\text{NHCO})]$ (4) is similarly non-dynamic ⁵

(+)-1-Phenylethylamine reacts with $[Os_3(CO)_{12}]$ in refluxing octane, as does PhCH₂NH₂,⁵ or at room temperature

if the neat amine is used.⁶ The major product in each case is $[HOs_3(CO)_{10}(PhCHMeNHCO)]$ (5) which exists as a mixture of two diastereomers (5a) and (5b). Exchange is slow enough for each to give separate ¹H n.m.r. signals (CDCl₃; 35 °C) at δ 1.43(d) and 1.40(d) (Me) and -14.38(s) and -14.48(s) (hydride). The diastereomers are easily and completely

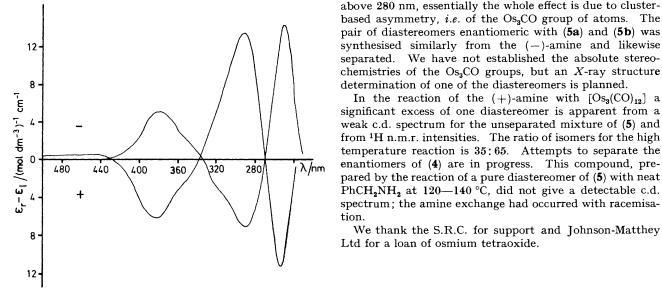


FIGURE. C.D. spectra for diastereomers (5a) and (5b).

separated into two yellow bands on SiO₂ (preparative t.l.c.; eluant, pentane), the separation being confirmed by their different ¹H n.m.r., but identical v(CO) i.r. spectra. There was no detectable interconversion of the isomers even after 20 min at 100 °C in toluene. The c.d. spectra of (5a) and (5b) in the range 280-500 nm (Figure) are approximate mirror images and since 1-phenylethylamine does not absorb above 280 nm, essentially the whole effect is due to clusterbased asymmetry, i.e. of the Os₃CO group of atoms. The pair of diastereomers enantiomeric with (5a) and (5b) was synthesised similarly from the (-)-amine and likewise separated. We have not established the absolute stereo-

determination of one of the diastereomers is planned. In the reaction of the (+)-amine with $[Os_3(CO)_{12}]$ a significant excess of one diastereomer is apparent from a weak c.d. spectrum for the unseparated mixture of (5) and from ¹H n.m.r. intensities. The ratio of isomers for the high temperature reaction is 35:65. Attempts to separate the enantiomers of (4) are in progress. This compound, prepared by the reaction of a pure diastereomer of (5) with neat PhCH₂NH₂ at 120-140 °C, did not give a detectable c.d. spectrum; the amine exchange had occurred with racemisation.

We thank the S.R.C. for support and Johnson-Matthey Ltd for a loan of osmium tetraoxide.

(Received, 11th August 1980; Com. 881.)

- ¹ F. Richter and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 1980, 19, 65.
- ² A. J. Deeming and M. Underhill, J. Chem. Soc., Dalton Trans., 1974, 1415. ³ A. J. Deeming, J. Organomet. Chem., 1978, 150, 123.
- ⁴ K. A. Azam and A. J. Deeming, J. Chem. Soc., Chem. Commun., 1977, 472; K. A. Azam, A. J. Deeming, and I. P. Rothwell, J. Chem. Soc., Dalton Trans., accepted for publication.
 - K. A. Azam, C. Choo Yin, and A. J. Deeming, J. Chem. Soc., Dalton Trans., 1978, 1201.
 R. Szostak, C. E. Strouse, and H. D. Kaesz, J. Organomet. Chem., 1980, 191, 243.