
Synthesis, Oxidation, and Reduction of Monocyclic 1,2,3-Triazines

By Akio Ohsawa, Heihachiro Arai, Hidefumi Ohnishi, and Hiroshi Igeta*

(School of Pharmaceutical Sciences, Showa University, Tokyo 142, Japan)

Summary Alkyl substituted monocyclic 1,2,3-triazines and their 1- and 2-oxides have been synthesized; catalytic reduction (on Pd-C) of the triazines afforded their 2,5-dihydro compounds.

ALTHOUGH the chemical and physical properties of 1,2,3triazines have been of interest and condensed 1,2,3-triazines have been widely investigated, little is known concerning the monocyclic 1,2,3-triazines (1).¹ The preparation of compounds (1) has been limited to cases in which $R^1 =$ $R^2 = R^3 =$ alkyl, aryl, or halogen, or a group (alkylamino, alkoxy, *etc.*) introduced by nucleophilic substitution of halogen.^{1,2}†

a'; $R^1 = Me$, $R^2 = R^3 = H$ b; $R^1 = R^3 = Me$, $R^2 = H$ c; $R^1 = Ph$, $R^2 = H$, $R^3 = Me$ d; $R^1 = R^2 = R^3 = Me$ We have found that alkyl or aryl substituted 1,2,3-triazines (1) can be obtained by lead tetra-acetate (LTA) oxidation of N-aminopyrazoles (2) according to the procedures developed by Rees and Storr *et al.*³ for the synthesis of 1,2,3-benzotriazines.

Careful oxidation of (2) with 1·1 mol. equiv. of LTA in CH₂Cl₂ at 0 °C, and cautious separation of the products using alumina column chromatography afforded (1) in moderate yields as shown in Table 1. The ¹H n.m.r. spectrum of (1a) showed signals at δ 2·70 (3H, s, 4-Me), 7·33 (1H, d, J 6·0 Hz, 5-H), and 8·94 (1H, d, 6-H); (1b), δ 2·68 (6H, s, 4- and 6-Me) and 7·11 (1H, s, 5-H): (1c), δ 2·76 (3H, s, 4-Me), 7·46—7·67 (4H, m, 5-H and 3 ArH), and 8·10—8·30 (2H, m, 2 ArH); (1d), δ 2·28 (3H, s, 5-Me) and 2·62 (6H, s, 4- and 6-Me).

TABLE 1. 1,2,3-Triaz

Starting material	% Yield	M.p./°C
(2a) + (2a') (mixture a)	30	31
(2c)	70	88
(2b)	58	159
(2d)	68	145

^a The separation and estimation of the amounts of (2a) and (2a') in the mixture were unsuccessful.

Compound (1d) has been synthesised previously from 1,2,3-trimethylcyclopropenyl azide, and the physical data for the compound we obtained were identical with those reported by Closs *et al.*⁴

Oxidation of compounds (1) with *m*-chloroperbenzoic acid (MCPBA) in CH_2Cl_2 at room temperature and careful column chromatography (alumina) afforded their 1-oxides (3)[‡] and 2-oxides (4) as shown in Table 2. The sites of the *N*-oxidations were determined by ¹H n.m.r. and (high-

TABLE 2. 1,2,3-Triazine N-oxides (3) and (4).

			Mass spectral peaks (m/e)		¹ H n.m.r. (δ, <i>J</i> in Hz) spectra Positions		
N-Oxide	% Yield	M.p./°C			4	5	6
(3a)	11	162	83 a	57 ^b	2.52 (3H, s)	7·44 (1H, br.d, 5·0)	8·43 (1H, d, 5·0)
(3b)	20	182	97 °	57 đ	2·46 (3H, s)	7·68 (1H, s)	2.46 or 2.60
					or 2.60 (3H, s)		
(3c)	29	197	159 e	57 f	2·57 (3H, s)	7·81 (1H, s)	7·47—7·66 (3H, m),
							8·018·16 (2H, m)
(3d)	10	140	111	$57(w^{g})$	Thr	ee singlets: 2.32 (3H), 2.46	(3H), 2.56 (3H)
(4 a)	30	95	abs.h	vwi	2.53 (3H, s)	6.79 (1H, d, 6.0)	8.50 (1H, br.d, 6.0)
(4b)	48	88	abs.	vw	2·46 (6H, s)	6.70 (1H, s)	2.46
(4 c)	60	178	abs.	vw	2·58 (3H, s)	7.21 (1H, s)	7·48—7·67 (3H, m),
• •					,	· · · · ·	8.00 - 8.16 (2H, m)
(4d)	31	112	abs.	vw	2·44 (6H, s)	2·23 (3H, s)	2.44
^a Obs. 8	3.037; calc.	83.037.	• Obs. 57.02	2; calc. 57·0	21. ° Obs. 97.054	; calc. 97.053. d Obs. 57.	022. ^e Obs. 159.069; calc.

159.068. ^f Obs. 57.022. ^g Weak. ^h Absent. ⁱ Very weak.

[†] This synthetic limitation has arisen chiefly from the lack of stability and availability of appropriate cyclopropenes or cyclopropenyl cations; compounds (1) have generally been synthesized *via* cyclopropenyl azides obtained from these compounds.

 \ddagger Several attempts to detect and isolate 4-Me-1,2,3-triazine 1-oxide and 4-Me-6-Ph-1,2,3-triazine 1-oxide have been unsuccessful. These compounds are most likely absent in the reaction mixture (¹H-n.m.r. and t.1.c.).

TABLE 3.	2,5-Dihydro-1,2,3-triazines	(5).
----------	-----------------------------	------

		¹ H n.m.r. (δ, J in Hz) Positions				
Compound	M.p./°C	2-(NH)	4	5	6	
(5b) (5c)	65 60	8·35 (1H, br.s) 9·02 (1H, br.s)	2.00 (6H, s) 2.05 (3H, s)	2·45 (2H, s) 2·80 (2H, s)	2.00 7.20—7.50 (3H, m), 7.60—7.80 (2H, m)	
(5 d)	54	8·45 (1H, br.s)	2.00 (6H, s)	1.02 (3H, d, 6.6), 2.67 (1H, q, 6.6)	2.00	

resolution) mass spectroscopy.§ In the latter, (3a-d) all showed both peaks due to $(M^+ - N_2)$ and $(MeCNO^+)$,§ while these ions are absent or very weak in the spectra of (4a-d). The reason why 4-methyl-1,2,3-triazine 1-oxide and 4-methyl-6-phenyl-1,2,3-triazine 1-oxide were not obtained is unclear at present.[‡]

Catalytic hydrogenation of (1b-d) on Pd-C (1 atm; room temp.) afforded the dihydro-compounds (5b-d) in almost quantitative yields; this presents a striking contrast to the similar reduction of 4,5,6-triphenyl-1,2,3-triazine (1, R¹ = R² = R³ = Ph) from which 3,4,5-triphenylpyrazole was obtained.⁵¶ The structures of the 2,5dihydro-1,2,3-triazines were supported by ¹H n.m.r. spectroscopy as shown in Table 3: *e.g.*, (5d) showed a quartet at δ 2.67 (J 6.6 Hz) due to the 5-methine proton and a doublet at δ 1.02 (J 6.6 Hz) due to the 5-methyl group, besides the signals of two methyl and NH groups. There was no n.m.r. evidence for the participation of other (*e.g.*, 1,4-) dihydro-structures for (5b, c and d). 5-H in (5b) was not exchangeable with CD_3OD (n.m.r.). These data show that there is no tautomerization of these dihydrocompounds and the protons are fixed in the 2,5-dihydroform.

Catalytic reduction of (3b) and (4b), and reduction of (1b) with NaBH₄ (in MeOH) also gave (5b) in reasonable yields.

Additionally, (5b-d) were oxidised to give (1b-d) when solutions in CDCl₃, CCl₄, CH₂Cl₂, *etc.*, were exposed to air; the mechanism of this is under investigation.

Finally, all attempts to synthesize the unsubstituted 1,2,3-triazine ($R^1 = R^2 = R^3 = H$) by the oxidation of N-aminopyrazole with LTA under various conditions have so far failed.

We thank the Central Research Laboratories of Sankyo Co., Ltd. for the high-resolution mass spectra of the samples in Table 2.

(Received, 29th July 1980; Com. 833.)

§ See the footnotes in Table 2.

¶ Pyrazoles were not found in the present study.

¹ R. J. Kobylecki and A. McKillop, Adv. Heterocyclic Chem., 1976, 19, 215, and refs. cited therein.

² G. Šeybold, U. Jersak, and R. Gompper, Angew. Chem., Int. Ed. Engl., 1973, 12, 847; R. Gompper and K. Schönafinger, Chem. Ber., 1979, 112, 1514, 1529, 1535.

³ B. M. Adger, S. Bradbury, M. Keating, C. W. Rees, R. C. Storr, and M. T. Williams, J. Chem. Soc., Perkin Trans. 1, 1975, 31. ⁴ G. L. Closs and A. M. Harrison, J. Org. Chem., 1972, 37, 1051.

⁵ E. A. Chandross and G. Smolinsky, Tetrahedron Lett., 1960, 19.