Preparation and Crystal Structures of (S₇I)₄S₄(AsF₆)₆ and S₄(AsF₆)₂·0.6SO₂; A Convenient Synthesis of Hexafluoroarsenate Salts of **Chalcogen Homoatomic Cations**

By JACK PASSMORE,* GEORGE SUTHERLAND, and PETER S. WHITE*

(Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3)

Summary The oxidising ability of AsF₅ is greatly enhanced by traces of bromine, and in its presence $S_4(AsF_6)_2 \cdot xSO_2$, $(x \leq 1)$ was prepared quantitatively from AsF₅ and S₈ in SO₂; the X-ray structures of $S_4(AsF_6)_2 \cdot 0.6SO_2$, and $(\mathrm{S}_7\mathrm{I})_4\mathrm{S}_4(\mathrm{AsF}_6)_6$ confirm the square planar geometry of S_4^{2+} in both salts, the former having a sulphur-sulphur bond distance of 2.014(4) and the latter of 1.98(1) Å.

Investigations of the sulphur-iodine-MF₅ (M = As, Sb) system led to the characterisation of S₇IMF₆,^{1,2} prepared in SO_2 or AsF_3 solution according to equations (1) and (2).

 $\rm S_8~(excess)~+~I_2~(excess)~+~3AsF_5 \rightarrow 2S_7IAsF_6~+~AsF_3$ (1)

 $\begin{array}{l} \mathrm{S_8} \; (\mathrm{excess}) \,+\, \mathrm{I_2} \; (\mathrm{excess}) \,+\, \mathrm{10SbF_5} \\ \quad \rightarrow \, \mathrm{6S_7ISbF_6} \,+\, (\mathrm{SbF_3})_3 \mathrm{SbF_5}^3 \end{array}$

(2)

J.C.S. CHEM. COMM., 1980

Attempts to prepare other S_rI^+ containing compounds $(x \neq 7)$ resulted, in one reaction, in $[(S_7I)_2I](SbF_6)_3 \cdot 2AsF_3^4$ and in another, a compound shown to be $(S_7I)_4S_4(AsF_6)_6$ by X-ray crystallography, prepared according to equation (3)

$$4\mathrm{S}_8 + 2\mathrm{I}_2 + 9\mathrm{AsF}_5 \xrightarrow{\mathrm{SO}_2} (\mathrm{S}_7\mathrm{I})_4\mathrm{S}_4(\mathrm{AsF}_6)_6 + 3\mathrm{AsF}_3 \tag{3}$$

An analogous reaction, with bromine replacing iodine, led to a product isomorphous with $(S_7I)_4S_4(AsF_6)_6$, presumably $(S_7Br)_4S_4(AsF_6)_6$ The reaction of sulphur and arsenic pentafluoride alone did not lead to the formation of S_4^{2+} ,^{2,5} therefore it appeared that bromine and iodine were catalysing its formation in these reactions This hypothesis was confirmed by the preparation of $S_4(AsF_6)_2$ by the reaction of sulphur and excess arsenic pentafluoride in the presence of traces of bromine, which, in fifteen minutes, yielded a pale blue solution over large colourless crystals, according to equation (4)

$$\frac{1}{2}S_8 + 3AsF_5 \xrightarrow{SO_2} S_4(AsF_6)_2 \cdot xSO_2 \ (x \leq 1) + AsF_3 \quad (4)$$

The preparation^{6,7} of $Se_4(AsF_6)_2$ and $Te_6(AsF_6)_4 \cdot xSO_2$ $(x \leq 2)$ is also greatly facilitated by traces of bromine and the oxidising power of arsenic pentafluoride is so enhanced that it reacts with elemental tellurium to give TeF₃AsF₆⁸ The smooth and easy synthesis of a number of other chalcogen-containing cations may therefore be effected by halogen catalysis

Crystal data $S_4(AsF_6)_2 \cdot 0.62SO_2$, monoclinic, space group C_{2h}^{c} (C_{2h}^{c}), a = 13.954(2), b = 7.653(1), c = 13.133(2) Å, $\beta = 100.00(1)^{\circ}$, Z = 4, $\mu = 5.91$ mm⁻¹, $D_c = 2.62$ Mg m⁻³ Data were collected for $2\theta \leq 50^\circ$, 1215 unique reflections, 1040 observed $[I \ge 3\sigma(I)]$

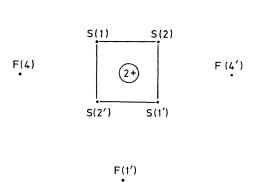
The data were corrected for absorption and the structure was solved by direct methods and refined by least squares giving a final R = 0.056 † The structure consists of chains of AsF_6^- amons separated alternately by S_4^{2+} rings, and SO_2 positions, which are 62% occupied — The S₄²⁺ cation is essentially planar and the two crystallographically different S-S bonds are of equal length The most significant cation-anion interactions are between fluorine atoms (of neighbouring AsF₆⁻ anions) that lie in the plane of the interacting $\mathrm{S}_4{}^{2+}$ (see the Figure)

Crystal data $(S_7I)_4S_4(AsF_6)_6$, tetragonal, space group P4/n (C_{4h}^{3}), a = 19.585(7), c = 8.321(3) Å, Z = 2, $\mu = 6.37$ mm⁻¹, $D_c = 2.77$ Mg m⁻³ Data were collected for $2\theta \leq 45^\circ$, 2066 unique reflections, 1307 observed $[I \ge 3\sigma(I)]$

Structure of the S_4^{2+} cation in $S_4(AsF_6)_2 \underbrace{0.62SO_2}_{-}$ and FIGURE nearest fluorine contacts from neighbouring AsF_{6}^{-} anions S(1)-S(2), 2015(3), S(1)-S(2'), 2013(3), S(1)-F(1), 2763(6), S(1)-F(4), 2736(7), S(2)-F(1), 2671, S(2)-F(4'), 2664(6) Å, $\angle S(2')S(1)S(2)$, 90 5(1), S(1)S(2)S(1'), 89.5(1)°

The data were collected and the structure determined as above, and refined with anisotropic thermal parameters assigned to all atoms, to give a final R = 0.106[†] The structure contains S_7I^+ units, similar in geometry to those in $S_7ISbF_6^{-1}$ The S_4^{2+} ring $[S-S = 1.98(1) \text{ Å}, \text{ angle } 90.0(5)^\circ]$ is planar with the shortest cation-anion contacts (2.67-2.96 Å) that are not in the plane of the ring The relatively large agreement factor is due to the high thermal motion of the amons, one of which is completely disordered

The square planar structure for S_4^{2+} , predicted by various methods,9 is confirmed The sulphur-sulphur bond distances in the two salts are statistically different and may arise from the different number and arrangement of anioncation contacts Both bond lengths are similar to the 2.00 Å predicted¹⁰ for the S-S bond distance in S₄(SO₃F)₂ (the only other characterised S_4^{2+} salt) from Raman data⁵ It is longer than that predicted¹⁰ for S_3^- (1.95 Å), which, like S_4^{2+} , has a formal S-S bond order of 1 25 This may, in part, be attributable to bond lengthening as a result of the repulsion of lone pairs, forced by the geometry of the ring, into an unfavourable eclipsed configuration ¹¹


We thank the Natural Sciences and Engineering Research Council (Canada) for financial support

(Received, 13th November 1979, Com 1185)

† The atomic co-ordinates are available on request from Prof Dr G Bergerhoff, Institute fur Anorganische Chemie, Universitat, Gerhard-Domagk-Str 1, D-5300 Bonn 1, West Germany Any request should be accompanied by a full literature citation for this communication

- ¹ J Passmore, P Taylor, T K Whidden, and P S White, J Chem Soc, Chem Commun, 1976, 689

- ¹ J Passmore, P Taylor, T K Whidden, and P S White, J Chem Soc, Chem Commun, 1976, 689
 ² J Passmore and G Sutherland, unpublished results
 ³ W A S Nandana, J Passmore, N Swindells, and P S White, unpublished results
 ⁴ J Passmore, G Sutherland, and P S White, J Chem Soc, Chem Commun, 1979, 901
 ⁵ R J Gillespie, J Passmore, P K Ummat, and O C Vaidya, Inorg Chem, 1971, 10, 1327
 ⁶ P A W Dean, R J Gillespie, and P K Ummat, Inorg Synth, 1974, 15, 213 and references therein 7 R C Burns, R J Gillespie, W -C Luk, and D R Slim, Inorg Chem, 1979, 18, 3086
 ⁸ J A Evans and D A Long, J Chem Soc (A), 1968, 1688
 ⁹ R J Gillespie and J Passmore, Adv Inorg Chem Radiochem, 1975, 17, 49 and references therein 10 R Steudel, Z Naturforsch Teil B, 1975, 30, 281
 ¹¹ R Steudel, Angew Chem Int Ed Engl, 1975, 14, 655

F(1)