Structural Characterisation of a Transient Intermediate in Rhodiumcatalysed Asymmetric Homogeneous Hydrogenation

By **JOHN M BROWN and PENNY** A **CHALONER** *(Dyson Perrzns Laboratory, South Parks Road, Oxford* **OX1** *3QY)*

conditions of homogeneous hydrogenation

IN previous papers we have described the formation *of* rhodium complexes derived from dehydroamino acids and their characterisation by phosphorus and carbon n m r

Summary An unstable rhodium alkyl has been character- spectroscopy ¹ Thus (RR) -1,2-bis- $(o$ -methoxyphenyl-
ised by n m r spectroscopy at low temperatures under the phenylphosphino)ethane² rhodium complexes of α phenylphosphino)ethane² rhodium complexes of α -benzamidocinnamic acid (1a) and its methyl ester (1b) exist as two diastereomers in ratio **10: 1** at room temperature These are co-ordinated to rhodium through olefinic and amide groups³ and differ in configuration of bound olefin At room temperature they disappear concomitantly on exposure to hydrogen

If the enamide complex [either acid **(2a)** or its methyl ester **(2b)]** is prepared under hydrogen at 195 K and allowed to warm to 220 K slowly then a new species is formed, to the extent of 30% under the most favourable conditions. It is distinguished (Figure) by very small $J_{P(1)-P(2)}$ and $J_{Rh-P(1)}$ values, suggestive of 5- or 6-coordination, and of an alkyl or hydride group trans to the high-field phosphine. 4 Above 230 K the transient species gradually disappears and studies with 13C-labelled dehydroamino acids *(vide* infra) demonstrate that the hydrogenation product appears simultaneously. Addition of an excess of $NEt₃$ or $HBF₄$ increases the rate of disappearance of the transient to some extent. **A** similar intermediate may be observed in low-temperature hydrogenation of enamide complexes derived from rhodium bis(diphenylphosphin0) ethane but not those from chiraphos^{5a} or diop.^{5b}t

The structure of this labile species is shown to be **(3)** by studies with carbon-13-labelled (1). Using criteria established earlier¹ it may be seen that both ester and amide groups are co-ordinated, the carbonyl **13C** resonances being shifted downfield by 12.1 and 9.2 p.p.m. respectively relative to the free ligand (Table). Both are coupled to the high-field phosphine, and **C(l)** also to rhodium. The 3 carbon has a chemical shift consistent with an sp³-benzylic

FIGURE. The phosphorus-31 n.m.r. spectrum of **(2b)** in methanol at 230 K under hydrogen. Signals due to **(3)** are asterisked and
a small quantity of $\{dipamp_2Rh^+\}$ is apparent at 56 p.p.m.
Spectral parameters: δ_2 70.7, δ_1 57.1 p.p.m., **J_{P(2)-Rh}** 137, $J_{P(1)-Rh}$ 97, $J_{P(1)-P(2)}$ 11 Hz.

site. In addition, the use of C-1, C-3 doubly labelled enamides shows a very small \ll 1 Hz) C-C coupling constant in the intermediate, suggesting saturation of the double bond.6 Halpern and co-workers have recently reported the ³¹P spectra of enamide complexes derived from methyl α -acetamido[2-¹³C]cinnamate and we have independently observed the 24.5 Hz $P(1) - C(2)$ coupling in $(2b)$. In $(3b)$ this is increased to 82 **Hz** and although there are no analogies in rhodium chemistry,⁷ there is a precedent for large trans-phosphine couplings in platinum alkyls.⁸ Taken together this evidence uniquely defines the structure of the intermediate to be **(3).**

TABLE. N.m.r. data for **(lb), (2b), (3b),** and **(6).** Comparable values are observed in the dehydroamino acid sequence.

Coupling constants (in Hz): ${}^{8}P(1)-C(1)$ 5, $P(1)-C(2)$ 24.5, 3·5, P(1)-C(2) 82, P(1)-C(3) *ca*. 2, P(1)-C(4) 8, P(2)-C(4) 2·5,
Rh-C(1) 2·5, Rh-C(2) 22·5. P(I)-C(4) 8, P(2)-C(4) *2.5,* Rh-C(2) 7, Rh-C(3) 15; **b** P(1)-C(1)

Enamide binding is slow at 220 K and when a deficiency of either **(la)** or **(lb)** is employed, up to 35% of the minor diastereomer is observed, since equilibration is also slow under these conditions. If hydrogen is then admitted to

-f Chiraphos = **(SS)-2,3-bis(diphenylphosphino)** butane ; diop = **trans-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyldioxolan;** $dipamp = (RR) - 1,2-bis-(o-methoxyphenylphosphino)$ ethane.

the n m r tube without raising the temperature then **(3)** appears gradually over **30** min at the exclusive expense of the minor diastereomer, and does not increase in intensity after the latter has disappeared If the enamide complex is formed at **265** K (at which temperature equilibration is rapid and the minor diastereomer virtually absent) and then hydrogenated at **220** K, **(3)** is evident only at very low concentrations These experiments require that the rhodium alkyl is formed predominantly⁹ from the minor diastereomer of **(2),** contrary to our earlier supposition Additionally, they show that the chelate enamide structure is maintained during hydrogen transfer, since the alternative alkyl **(4)** is not formed Hydrogenation involves firstly czs-addition of hydrogen to rhodium, giving *(5)* (or a Rh stereoisomer) and then intracomplex hydride transfer giving a cationic alkyl monohydride At 220 K the ratedetermining step in the overall hydrogenation reaction is breakdown of (3) and requires a rapid¹⁰ hydride transfer to give *(6)* If this is the mechanism under catalytic con-

ditions at room temperature then a number of earlier observations, such as the requirement for terdentate substrates in dipamp-Rh+ \dagger promoted hydrogenations^{2,11} are explicable The rhodium alkyl **(3)** is in any event a very simple model for the transition-state of asymmetric hydrogenation

Since this manuscript was accepted for publication, a **bis(dipheny1phosphino)ethane** analogue of **(3)** has been reported¹² and the ¹H n m r spectrum recorded Although undetected earlier, we have now observed a weak hydride signal from (3b), δ -19 3 p p m , $J_{H-P,Rh}$ 11, 23, 34 Hz Unlike the intermediate described by Chan and Halpern,¹² **(3b)** does not react with MeCN (≥ 1 equiv, 230 K) but their evidence requires caution concerning the precise role of the methoxy carbonyl group

We thank the E P Abraham Research Fund for a fellowship (to PAC) and Johnson Matthey Ltd for a loan of rhodium trichloride

(Recezved, 31st December **1979,** *Corn* **1345**)

(a) J M Brown and P **A** Chaloner, *J Chem SOC* , *Chem Commun* , **1978,321, 1979,613** (b) *J Am Chem Soc* , **1980,** in the press, (c) **J** M Brown, P **A** Chaloner, B A Murrer and D Parker, *Adv Chem Ser* , **1980,** in the press

B D Vineyard, W S Knowles, M J Sabacky, G L Bachman and D J Weinkauff, *J Am Chem Soc* , **1977, 99, 6262**

A S C Chan, J J Pluth, and J Halpern *Inorg Chim Acta*, 1979, 37, L 477
A R Sanger, *J Chem Soc Dalton Trans* 1977, 120 C A Tolman, P Z Meakin D L Lindner and J P Jesson, *J Am Chem Soc* , **1974, 96, 2762**

t, 1972, 1987

S (a) M D Fryzuk and B Bosnich, *J Am Chem Soc*, 1977, 99, 6262 (b) H B Kagan and T P Dang, *ibid*, 1972, 94, 6429

CP A Chaloner, *J Chem Soc*, *Perkin Trans* 2 in the press

19, 161, M Michman and S Weksler-Nussbaun, *J Chem Soc Perkzn Trans* **2 1979, 872** *8* **A** J Cheney, B E Mann, and B L Shaw, *Chem Commun* , **1971, 431 ⁷**Rhodium complexes with mutually *trans* alkyl and phosphine ligands are rare W Keim, *J Organomet Chem* **1969, 14, 179,**

⁹Assuming that hydrogen transfer is **czs** C Detellier, G Gelbard and H Kagan *J Am Chem SOC* , **1978 100 7556** K E Koenig and W S Knowles p 7561

¹⁰ L Abis, A Sen, and J Halpern *J Am Chem Soc* 1978, 100 2915 K I Gell and J Schwartz p 3246
¹¹ W C Christopfel and B D Vineyard *J Am Chem Soc*, 1979, 101 4406
¹² A S C Chan and J Halpern, *J Am Chem Soc*, 1980, 1