Photosolvolysis of O,O,S-Trimethyl Phosphorodithioate. Evidence for **an S,l(P) Mechanism'**

By HENDRIK P.BENSCHOP,* CORNELIS **A.** C. KONINGS, and DOMINIQUE H. J. M. PLATENBURG *(Prim Maurits Laboratory TNO,* **2280 AA** *Rijswijk, The Netherlands)*

and RUDOLF DEEN

(Central Laboratory TNO, **2600 AE** *Delft, The Netherlands)*

Summary Irradiation **(254** nm) of (MeO),P(S)SMe in ROH yields mainly $(66\%, R = Pr^i)$ the ionic photosolvolysis product $(MeO)₂P(S)OR$ with the very low capture ratio 1.9 ± 0.4 for R = Me *vs.* R = Prⁱ under competitive photosolvolysis conditions, whereas irradiation in *e.g.* tetrahydrofuran and CH_2Cl_2 gives free-radical products, suggesting that the photoreactions proceed by way of an 'intimate radical-ion pair.'

IN earlier photochemical investigations of organophosphate model compounds for pesticides, we found² that irradiation (254 nm) of $EtO(Ph)P(O)SPrⁿ$ in $EtOH$ leads mainly to photoreduction of the P-S and S-C bonds, whereas photosolvolysis to $(EtO)₂Ph(P)O$ is a minor reaction pathway. We now report that upon irradiation (254 nm(of $(MeO)₂$ -P(S)SMe $[(1), \lambda_{\text{max}} 202 \text{ nm}, \epsilon_{254} 83 \pm 21 \text{ mol}^{-1}, \text{Pr}^{\text{1}}\text{OH}]$ in Pr¹OH the photosolvolysis product (MeO)₂P(S)OPr¹ (2) (Scheme 1) becomes the major reaction product (66%) .[†]

f Pesticides with the general structure (MeO)₂P(S)SR, *e.g.* malathion $[R = [CH(CO_2Et)CH_2(CO_2Et)]$ and dimethoate $[R = CH_2-H_1]$ $C(O)$ NHMe], show qualitatively the same photochemistry as the title compound $(R = Me)$.

The photoreduction products **(3)** and **(4)** are formed to a minor extent $(<6\%)$.

A priori, several reaction mechanisms can be considered for the formation of **(2)** : (i) bimolecular reaction of a singlet or triplet excited state of **(1)** with PriOH, (ii) photosolvolysis *via* the radical cation $[(MeO)_2P(S)SMe]$ ⁺, (iii) direct photoionization of the P-S bond, and (iv) homolysis of the P-S bond, followed by electron transfer in the radical pair. When the photosolvolysis of **(1)** is carried out in acetonitrile with various concentrations of Pr¹OH $(0.019 - 0.31 \text{ m})$, a linear relationship is observed between the reciprocal value of the quantum yield for the formation of **(2)** and the reciprocal PriOH concentration. At high concentrations of Pr¹OH $(\geq 0.4 \text{ M})$, this quantum yield has reached a maximum value $(\Phi \ 0.10)$. These results show that (2) is formed by bimolecular reaction either with excited **(1)** or with a reactive intermediate. From competitive photosolvolysis experiments in the presence of various molar ratios of MeOH and Pr¹OH (MeOH/Pr¹OH = $0.8-4.0$), we have calculated a capture ratio for MeOH *us.* PriOH of 1.9 ± 0.4 . This low ratio, similar to that for reactions of these alcohols with carbenium ions,³ strongly indicates a reaction with highly reactive intermediates, rather than with excited **(1).** In the latter case, much higher capture ratios *(ca.* **7,** *cj.* ref. 4) should be expected, owing to steric interactions of five ligands at phosphorus in the transition state of the reaction.

Photosolvolysis *via* the radical-cation $[(MeO)_2P(S)SMe]$ ⁺ is also ruled out, since the lowest ionization energy of **(l),** as measured from its photoelectron spectrum, is **8.97** eV (206.8 kcal).⁺ Even when the approximate solvation energy of the free electron⁵ and of the radical-cation⁶ in acetonitrile is taken into account, this is probably above the possible range of the excitation energy of **(1).** Moreover, photosolvolysis of (1) in H₂O-MeOH, in the presence of N₂O, does not yield nitrogen, indicating that solvated electrons are not involved' in the photoreactions of **(1).**

Thus, we propose that the photosolvolysis of **(1)** proceeds *via* an $S_N I(P)$ -mechanism with the thiophosphorylium ion $(MeO)_2$ $P(S)$ as an intermediate. The latter species might be formed either directly from the excited state or *via* primary homolysis of the P-S bond, followed by electron transfer. Our results do not permit a choice between these two pathways, which may also interchange *e.g.* with the polarity of the solvent. However, the following evidence indicates that the radical $(MeO)_2P(S)$ can be involved in our reactions. (a) Irradiation of **(1)** in tetrahydrofuran (THF) yields 0,O-dimethyl **2-tetrahydrofuranylphosphonothioate** *(5)* as the major reaction product, whereas irradiation of **(1)** in CH_2Cl_2 yields O,O-dimethyl phosphorochloridothionate *(6)* as the major reaction product. (b) Irradiation of **(l),** either in PriOH or in benzene, in the presence of the spin trap **N-benzylidene-t-butylamine-N-oxide** leads to the observation of the e.s.r. spectrum of the adduct of a Pcentred radical to the trap, probably $(MeO)_2P(S)-CH(Ph)-$ N(O.)Bu^t [in benzene: $a(P) = 2.54$, $a(N) = 1.43$, $a(H) =$ 0.28 mT; *cf.* Brunton *et al.*⁸].

SCHEME 2

The irradiations in THF and in CH_2Cl_2 give end products which are evidently derived from radical-type reactions, whereas the e.s.r. evidence also shows that the radical (MeO),P(S). is formed. Tentatively, we suggest (Scheme **2)** that **(2)** is formed *via* the 'intimate radical-ion pair' intermediates **(10)** and **(ll),** similar to those in the photoreactions of benzyl and alkyl halides^{9,10} and of bicyclic halides.^{11,12}

The alternative formation of (2) *via* direct addition of the radical $(MeO)_2P(S)$ to Pr¹OH yielding the intermediate $(MeO)_2P(S^-)-O^+(H)-Pr^1$ by analogy with the suggestion of Emoto *et al*¹³ for the formation of $(Ph)_{2}P(S)$ OMe during irradiation of $[(Ph)_2P(S)-]_2$ in MeOH-CH₂Cl₂ seems very improbable Our results show that their product can be formed via $(Ph)_2P(S)Cl$ $[cf$ $(6)]$

The photosolvolysis of (1) in Pr¹OH is sensitized by high energy triplet sensitizers $(E_T > 80 \text{ kcal/mol})$ such as benzene diphenyl ether anisole and p xylene but not by sensitizers with $E_T < 80 \text{ kcal/mol}$ (e *g* benzonitrile E_T) **77** kcal/mol) *2* hese results indicate that photosolvolysis of **(1)** may proceed by way of a high energy triplet state **(8)** although reaction *vza* the singlet state *(7)* cannot be ruled out The possible involvement of **(8)** has led to the intro duction into Scheme 2 of an intersystem crossing between the initially formed triplet radical pair **(9)** and the sub sequently formed intimate (singlet) radical ion pair $(10-11)$

The next major photolysis product **(190/,)** of the irradia tion of (1) in Pr¹OH ie MeO(MeS)P(O)OPr¹ (15 Scheme **3)** may have been formed *vta* initial thiono thiolo isomeriza tion of **(1)** Therefore we have irradiated (254 nm) the isomer $(MeS)_2P(O)OMe$ [(12) λ_{max} 230 nm Pr¹OH] in PrtOH P(O)H (14) presumably by way of (dark) solvolysis¹⁴ of the photoreduction product MeO(MeS)P(O)H **(13)** Since the photoreduction of the P *S* bond. is essentially a reversible process2 **l5** the end product **(15)** can be formed by reaction of (14) with thiyl radicals resulting e g from secondary photolysis of MeSH or (MeS), This resulted in the rapid formation of $MeO(Pr¹O)$

Hence the P(O)SR unit $\lceil e \, \mathfrak{c} \rceil$ (12) *cf* also ref 21 appears to undergo photoreduction reactions of the P-S and *5* C

bonds preferentially whereas the P(S)SR unit $[e \ g \ (1)]$ preferentiallv gives ionic reaction products This observed regularity might be due to a better stabilization of positive charge on phosphorus in the ion pair $[e g (11)]$ by sulphur than bv the highlv electronegative oxygen atom **A** similar effect has been invoked in the $E1cb$ hydrolysis of phosphoramidic halides l6

We thank Dr J Cornelisse (Leiden University) for helpful discussions and Dr C **A** de Lange (Free University Amsterdam) for measuring the photoelectron spectrum of the title compound

(Recezved 26th ilIarclL **1979** *Corn* **309**)

Presented in part at Tht International Conference on Phosphorus Chemistry Halle (GDR) September **1979** (abstract **92** in H P Benschop C **A** G Konings D H J M Platenburg and K Deen *J Chem Soc Perkzn T+rans 2* **1980 198** H P abstracts)

Benschop and M Halmann *ibid* 1974 1175

³S J Cristol and **I3** E Greenwald *Tetrahedron Lett* **1976 2105** 4R F Hudson and **L** Keay *J Chem Soc* **1960 1865**

J H Baxendale *Radzat Res Suppl* **1964 4 139**

6V D Parker *J Am Chem* Soc **1976 98 98**

N Getoff and S Solar *Monatsh Chem* **1974 105 241**

⁸ G Brunton B C Gilbert and R J Mawby *J Chem Soc Perkin Trans* 2 1976 650
⁹ D C Appleton B Brocklehurst J McKenna M J Smith P S Taylor S Thackerey and A R Walley *J Chem Soc Chem*

1978 100 6674

Commun 1977 108

¹⁹ P J Kropp G S Pondexter N J Pienta and D C Hamilton *J Am Chem Soc* 1976 98 8135

¹¹ R S Givens and L Strebowski *J Am Chem Soc* 1975 97 5867

¹² S J Cristol D P Stull and R R Daussin *J Am Chem J Chem Soc (C)* **1966 722** S K Wong W Sytnyk and J K S Wan *Can J Chem* **1971 49 994**

14 E **D** Miant ev **4 I** Zavalishina S F Sorokina and **A 4** Borisenko *J Gen Chem USSR (Engl Transl)* **1976 46 469**

¹⁶ W A Mosher and R R Irino *J Am Chem Soc* 1969 91 756
¹⁶ A F Gerrard and N K Hamer *J Chem Soc (B)* 1969 369 N K Hamer and R D Tack *J Chem Soc Perkin Trans* 2 **1974 1184**