Square-planar *trans*-Bis-(1-*p*-n-octylphenylbutane-1,3-dionato)copper(11), a New Compound exhibiting Three Kinds of 'Double Melting' Behaviour

By KAZUCHIKA OHTA, MASAAKI YOKOYAMA, SHIGEKAZU KUSABAYASHI, and HIROSHI MIKAWA*

(Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-kami, Suita, Osaka 565, Japan)

Summary The new compound, square-planar trans-bis-(1-p-n-octylphenylbutane-1,3-dionato)copper(II) has four polymorphs, C¹ (m.p. 96 °C), C^a (99 °C), C^m (108 °C), and C^h (109 °C); C^l, C^a, and C^m exhibit double-melting behaviour.

THE title complex was investigated in an attempt to synthesise a new mesomorphic compound containing a transition metal. This complex does not have a mesomorphic state, but exists in four solid polymorphic forms: C^{l} , C^{a} , C^{m} , and C^{h} with different melting points (Figure). Interestingly, C^{l} , C^{a} , and C^{m} exhibit the so-called double melting behaviour, ¹ C^{l} only on very rapid heating, and C^{a} and C^{m} only on very slow heating. So far as we know, this is the first compound of the ML₂ type (M = transition metal, L = ligand) with a long alkyl chain which has three double melting forms.

All m.p.'s and phase transitions are shown in the Figure. Each polymorph could be obtained as a stable solid at room temperature and was identified mainly by X-ray powder diffraction.

TABLE. X-Ray diffraction data with relative intensities (I/I_1) for the four strongest lines in each polymorph.

C'n	$\begin{cases} d {\rm \AA} \\ I/I_1 \end{cases}$	$\frac{11.05}{100}$	4.00 89	$\begin{array}{c} 8 \cdot 04 \\ 43 \end{array}$	3·74 38
Сш	$\begin{cases} d {\rm \AA} \\ I/I_1 \end{cases}$	$\frac{10 \cdot 28}{100}$	$8.51 \\ 51$	$4 \cdot 25$ 37	$\begin{array}{c} 9\cdot 72\\ 34\end{array}$
Св	$\begin{cases} d {\rm \AA} \\ I/I_1 \end{cases}$	$\frac{10.51}{100}$	4.13 98	$8.27 \\ 91$	$6.86 \\ 61$
C1	$\Big\{^{d{\rm \AA}}_{I/I_1}$	4·10 100	$\begin{array}{c} 6.97 \\ 100 \end{array}$	$\begin{array}{c} 5\cdot 99\\ 68\end{array}$	$3.66 \\ 51$

When C^1 was rapidly heated (>10 °C/min), a solid mixture of C^1 and C^h was obtained because of a relatively slow solid-solid phase transition from C^1 to C^h at *ca*. 50 °C. The C^1 crystals in the mixture melted at the m.p. of C^1 , 95·7– 95·8 °C, and then the melt resolidified completely in the C^h form because of the presence of seed crystals of C^h formed by the solid-solid phase transition; on further heating, the C^h crystals melted finally at the m.p. of C^h, 109·1–109·3 °C. However, when C¹ was heated very slowly (<2·5 °C/min) from room temperature, the complete solid-solid phase transition occurred below the m.p. of C¹, and therefore only a single m.p. of C^h was observed. When C¹ crystals at room temperature were brought into contact with a bath at 106·0 °C, a mixture of crystals of C^h and C^m was obtained (route 4 in the Figure).

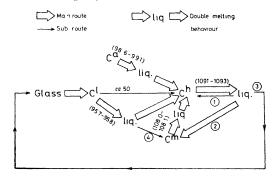


FIGURE The sequence of changes of state for square-planar trans-bis-(1-p-n-octylphenylbutane-1,3-dionato)copper(II): (1) very slow cooling; (2) slow cooling; (3) rapid cooling; (4) see main text. Numbers in parentheses are m.p.s. in °C.

When C^m was heated very slowly ($<0.1 \circ C/min$) from room temperature, a solid-solid phase transition was not observed and it melted completely at its m.p. of 108.0- $108.1 \circ C$; the melt then resolidified in the C^h form and on further heating it melted again at the m.p. of C^h, 109.1- $109.3 \circ C$. However, when C^m was rapidly heated ($>1.0 \circ C/min$) from room temperature up to $110 \circ C$, only a single m.p., that of C^m, was observed. C^{a} exhibited double-melting behaviour without a solidsolid phase transition. At a heating rate of <10 °C/min, C^{a} melted at its m.p., 98.6-99.1 °C, and then resolidified as C^{h} . C^{h} has, of course, only a single m.p.

The square-planar trans-bis(1-2-n-octylphenylbutane-1,3dionato)copper(II) and its polymorphs: C^{I} , C^{a} , C^{m} , and C^{h} were prepared as follows. From p-n-octylacetophenone synthesised by the method of Giroud et al.,² 1-p-n-octylphenylbutane-1,3-dione was obtained following the method of Beyer et al.³ and its copper(II) complex was prepared by the method of Hon et al.⁴ This gave satisfactory C and H analyses, and showed λ_{max} (n-hexane) 264 (ϵ 39,000), 293 (26,000), 324 (51,000), 549 (40·1), and 662 (48·0) nm. Its electronic, far-i.r., and Raman spectra, to be reported elsewhere, provided evidence for its trans-square-planar structure, as for bis-(1-phenylbutane-1,3-dionato)copper(II).⁴ No changes in co-ordination mode were observed in the four polymorphic forms. C¹ was obtained as green striplike crystals by recrystallization at 5 °C from boiling methanol, ethanol, acetone, or nhexane. C^a was obtained as green crystals by evaporation of an acetonitrile solution at 30-32 °C during about 1 month. C^m, which could not be obtained by recrystallization, could be obtained as green lustrous spherulites by slow cooling of the melt from about 140 °C. C^h, grey-green microcrystals, was prepared by solution phase transformation,⁵ *i.e.*, C¹ was added to acetonitrile in excess of its solubility limit and the solution temperature was kept at 50 °C for about 20 min. With this procedure C¹ was transformed completely into C^h. A glass, which is stable at room temperature, was obtained when the melt was dipped into liquid nitrogen.

(Received, 18th December 1979; Com. 1313.)

- ¹ The multiple melting behaviour of glycerides is well known: D. Chapman, Chem. Rev, 1962, 62, 433
- ² A. M. Giroud and U. T. Muller-Westerhoff, Mol. Cryst. Ltq. Cryst. Lett., 1977, 41, 11.
- ³ C. Beyer and L. Claisen, Ber., 1887, 20, 2180.
- ⁴ P. Hon, C. H. Pflunger, and R. L. Belford, Inorg. Chem., 1966, 5, 516
- ⁵ J. Haleblian and W. McCrone, J. Pharm. Sci., 1969, 58, 911.