Direct Observation of Boat–Chair \Rightarrow **Chair–Boat Equilibrium in the 3,7-Diazabicyclo[3.3.l]nonane Ring**

By **YOSHITO** TAKEUCHI,*

(Department of Chemzstry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan 153)

PAL SCHEIBER^{*}

(Department of Chemistry, The Veterinary ,University, Budapest, Hungary)

and KANAKO TAKADA

(Kawamura Research Institute, Kamikizaki, Urawa-shi, Saitarna, Japan 338)

Summary Variable-temperature **13C** n.m.r. spectra of **3,7-dialkyl-1,5-diazabicyclo[3.3.l]nonan-9-ones** unambiguously establish a boat-chair \rightleftharpoons chair-boat equilib**rium** rather than the fixed double-chair conformation which had previously been proposed.

THE stereochemistry of derivatives of bicyclo $[3.3.1]$ nonane **(1)** is of great interest because of its connection with the dynamic stereochemistry of cyclohexane.' Of the three possible conformations [double chair **(la,** CC), boat-chair **(lb,** BC), and double boat **(lc,** BB)] it seems established that the first is, although somewhat flattened, the most stable, by analogy with cyclohexane. This analogy is supported by ample theoretical² and experimental³ evidence, and is also claimed to be applicable to heterocyclic compounds with nitrogen and oxygen atoms in the **3-** or 3- and 7-positions of the ring.4

Scheiber and Nádor⁵ have proposed, however, a BC conformation for **3** , 7-dialkyl- **1,5-dipheny1-3,7-diazabicyclo-** [3.3.1] nonan-9-one $[(2), R = Me; (3), R = Bu^t]$, based chiefly on the comparison of the dipole moment of **(2) (3.34** D) with that of analogous compounds including diaza-adamantane **(4)** (1.94 D) in which the two piperidone

rings are necessarily fixed in a chair conformation. They also proposed a rapid $BC \rightleftharpoons CB$ equilibrium since the ambient-temperature **lH** n.m,r. spectra of **(2)** and **(3)** show only one **AR** quartet, rather than two, for the methylene protons.

We now describe the direct observation of this $BC \rightleftharpoons CB$ equilibrium in **(2)** and **(3)** from a variable-temperature 13C n.m.r. (¹³C dynamic n.m.r.) study.[†] At ambient temperatures (2) exhibits only three peaks $[\delta_c 45.5 (N-CH_3), 54.5]$ **(C-1.5),** and **67-9** (CH,)] in the aliphatic region. Offresonance decoupling unequivocally established this assignment. As the temperature was lowered, the CH_2 singlet gradually broadened, coalesced at -63 °C, and finally split into two peaks of equal intensity. At the slow exchange limit, the maximum chemical shift difference was **6.0** p.p.m. This dynamic n.m.r. behaviour could be simulated using a simple **A** to B exchange model; **AG'** was **9.7** kcal/mol at **-63** *"C* for the exchange process.

This line splitting observation, together with the fact that the **C-1,5** signal remains as a sharp singlet throughout **the** temperature range investigated, is consistent with the freezing out of a structure of two-fold symmetry $(C_s$ or C_2), at -63 °C, implying a BC \rightleftharpoons CB equilibrium. **A** double

twist-boat (TBTB) \rightleftharpoons double twist-boat equilibrium is also possible but the averaging motion is pseudorotational and is expected to have a very low energy barrier. A chemical shift difference of **6** p.p.m. for **C-2** and **C-4** (and hence **C-6** and C-8) is also very unlikely.

Another alternative, which is even less likely, is a slow double nitrogen inversion with a fixed CC conformation. The barrier for N-methyl inversion for piperidine is thought to be 8.7 kcal/mol (equation to transition state).⁶ Furthermore, from symmetry requirements equatorial and axial conformers should be equally populated, which is highly unlikely. Indeed, the methylene carbons of **(3)** show no spectral changes below temperatures at which nitrogen inversion is prohibited.

A BC \rightleftharpoons CB equilibrium was proposed to explain the ¹³C dynamic n.m.r. spectrum of the **bicyclo[3.3.l]nonan-9-y1** cation.⁷ The $CH₂$ signal of this compound merely continues to broaden as the temperature decreases, and fails to indicate 'freezing out' at temperatures as low as -150 °C. Hence, to the best of our knowledge, this communication reports the first, direct observation of a $BC \rightleftharpoons CB$ equilibrium for the bicyclo $[3.3.1]$ nonane system.

Y.T. thanks the Ministry of Education for a grant-in-aid.

(Received, **31st** *December* **1979;** *Corn.* **1346.)**

=f 13C n.m.r. spectra were determined with Varian **FT-80A** and JEOL **FX-100** spectrometers for solutions of *ca.* 50 mg of sample in **1** ml of $CD_2Cl_2 - CS_2(1:1 \text{ v/v}).$

N. S. Zefirov, *Usp. Khim.,* **1975, 44, 413;** *Russ. Chem. Rev. (Engl. Transl.),* **1976, 44, 196.**

G. J. Gleicher and P. von R. Schleyer, *J. Am. Chem. Soc.,* **1967, 89, 582;** N. L. Allinger, M. **T.** Tribble, M. **A.** Miller, and D. H. Wert, *ibid.*, 1971, 93, 1637.
³ W. A. C. Brown, M. Martin, and G. A. Sim, *J. Chem. Soc.*, 1965, 1844; E. Osina, V. S. Mastryukov, L. V. Vilkov, and N. A.

Belikova, *J. Chem. SOC., Chem. Commun.,* **1976, 12.**

J. E. Douglass and T. B. Ratliff, *J. Org. Chew.,* **1968, 38, 355;** M. Dobler and J. D. Dunitz, *Helv. Chim. Acta,* **1964, 47, 695;** M. R. Chakrarty, **R.** L. Ellis, and J. L. Roberts, *J. Urg. Chem.,* **1970, 35, 541.**

P. Scheiber and K. NAdor, *Acta Chim. Acad. Sci. Hung.,* **1975, 84, 193. A.** R. Katritzky, R. C. Patel, and F. G. Riddell, *J. Chern. Soc., Chern. Cornmun.,* **1979, 674.**

⁷ R. P. Kirchen and T. S. Sørensen, *J. Am. Chem. Soc.*, 1978, 100, 1487.