Composition and Staging in the Graphite–AsF₆ System and its Relationship to Graphite–AsF₅

By EUGENE M. MCCARRON and NEIL BARTLETT*

(The Chemistry Department, University of California, and the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720)

Summary Interconversion, of graphite-AsF₅ intercalates and C_{12n} +AsF₆⁻ salts, establishes the equilibrium: $3AsF_5 + 2e^- \rightleftharpoons 2AsF_6^- + AsF_3$, for AsF₅ intercalation, and simple staging-stoicheiometry relationships exist for both the AsF₅ and AsF₆⁻ intercalates.

INTERCALATION of AsF_5 into pyrolytic graphite¹ produces an excellent metal² and there has been much speculation on the nature of the guest species. Our interest in related AsF_6^- salts³ prompted our examination of the AsF_5 materials and from synchrotron-radiation As-absorption edge studies, we concluded^{4,5} that AsF_5 was entering graphite by oxidation according to equation (1). The observation⁶ that AsF_5 can be

$$3AsF_{5} + 2e^{-} \rightarrow 2AsF_{6}^{-} + AsF_{3}$$
(1)

recovered from the intercalate, implied reversibility of (1), but the As-absorption edge studies⁴ did indicate essentially complete conversion into AsF_6^- and AsF_3 . There has been much reluctance to accept this interpretation. Some of this has derived from failure to find AsF_3 in the gases from graphite-AsF₅.⁶ The failure to observe more than one ¹⁹F n.m.r. resonance,⁷ and the large electron withdrawal from the graphite (which extensive conversion into AsF_6^- requires) have also presented difficulties.⁸

Our investigation of the volatile products from C_xAsF_5 shows that the earlier findings⁶ were misleading. A sample of C_8AsF_5 , was prepared from powdered high-purity pyrolytic graphite, which had been well dried, and pretreated with fluorine to remove any reducing species. I.r. spectroscopy showed other i.r.-active components to be absent from the AsF_5 used in the preparation. The volatile products from a C₈AsF₅ sample at 20 °C, held under vacuum, were monitored by i.r. spectroscopy as a function of pumping time. Within the first minute the volatile product was largely AsF_5 , but AsF₃ was also detected. As the composition of the intercalate approached $C_{10}AsF_{5-6}$, the volatile products proved to be approximately equimolar quantities of AsF₅ and AsF₃. From $C_{10}AsF_{5-6}$ to $C_{14}AsF_{6}$ (after several hours of pumping) the only volatile product detected was AsF₃. Removal of AsF_3 requires an increase in the AsF_6^- fraction of the arsenic species remaining in the graphite and all indications are that the vacuum stable product is an AsF₆salt. Although, at 20 °C, the major initial volatile product from C₈AsF₅ is AsF₅, the only one from the third stage compound $C_{24}AsF_5$ is AsF_3 . This is consistent with a higher positive charge and electron affinity of the carbon network in the first stage C_8 compound, relative to the third stage material. Of course the reversal of (1), to produce AsF_5 , requires that the carbon network should recapture electrons from the AsF₆⁻.

In a separate series of experiments, graphite was intercalated by AsF_5-F_2 mixtures to yield C_xAsF_6 . At the intercalation limit, \dagger tensimetry of the F_2 and AsF_5 consumption satisfies the equation: $8C + AsF_5(g) + 1/2F_{2}(g) \rightarrow C_8AsF_6$. The AsF_6^- salts are stable in a vacuum at 20 °C. By monitoring highly oriented (*c* axis) pyrolytic-graphite slabs (of thickness *t*) both by micrometry and X-ray diffraction, it has been established that the composition for each stage is $C_{12n}AsF_6$ (*n* the stage), up to the first stage onset of $C_{12}AsF_6$. This means that each occupied gallery up to the first stage, has a composition $C_{12}AsF_6$, as indicated in Figure 1. The micrometer t/t_0 (t_0 being the thickness of the original graphite) compares closely with the t/t_0 (ideal) derived from the X-ray diffraction gallery-height measurements. With sufficient AsF_5/F_2 the first-stage composition can be taken

FIGURE 1. Composition/staging relationships for C_xAsF_5 and C_xAsF_6 . Dashed line = C_xAsF_6 , solid line = C_xAsF_5 . t/t_0 = [thickness $C_xAsF_5(or_6)$]/(thickness parent graphite).

from $C_{12}AsF_6$ [with a gallery height, c = 8.04(2) Å] to a limit of C_8AsF_6 [c = 7.86(2) Å].[‡] Single crystal work establishes that the latter is hexagonal with a = 4.92(2), c = 7.86(2), V = 165 Å³, the volume of which requires that the AsF_6^- be in close-packed 'planar' array. The *c*-axis contraction from $C_{12}AsF_6$ to C_8AsF_6 can be attributed to the increased Coulomb attraction of guest and host, with the change from C_{12}^+ to $C_8^+AsF_6^-$.

FIGURE 2. Structural models for (a) $C_{12}AsF_6$ or $C_{12}AsF_6$. 1/2 AsF_3 ; $\blacktriangle AsF_6^-$ in $C_{12}AsF_6$; $\bigoplus AsF_3$ in $C_{12}AsF_6$. 1/2 AsF_3 and (b) C_8AsF_6 ; $\bigstar AsF_6^-$.

In a gallery occupancy of $C_{12}AsF_6$, each anion need have only three anion neighbours, whereas in C_8AsF_6 each is constrained to have six (see Figure 2). We attribute the $C_{12n}AsF_6$ staging-composition relationship to the reduced repulsive interactions offered by the $C_{12}AsF_6$ gallery occupancy. Evidently, opening of virgin galleries is preferred over filling beyond $C_{12}AsF_6$, as long as virgin galleries are available.

 \uparrow At lower guest concentrations (e g., C₁₂AsF₆) the material takes up fluorine to a limit C₂AsF₆· $\frac{1}{2}$ F₂. This F₂ presumably occupies vacancies in the galleries and can be 'titrated' with more AsF₅ or AsF₃ to yield AsF₆⁻.

[‡] We have noted similar effects of charging on the gallery height ('c') in other systems (N. Bartlett, E. M. McCarron, B. W. McQuillan, and T. E. Thompson, Synthetic Metals, 1980, 1, 221). Thus $C_{12}^{2+}PtF_{6}^{2-}$ and $C_{8}^{+}IrF_{6}^{-}$ have 'c' values of 7.56 and 8.06 Å, respectively. Since the formula unit volumes of NO⁺IrF₆⁻ and NO⁺PtF₆⁻ are 129.32 and 129.25 Å, respectively (N. Bartlett, Angew. Chem., 1968, 7, 433. IrF₆⁻ and PtF₆⁻ must have almost the same volume. The volume of PtF₆²⁻ must be greater than that of PtF₆⁻, therefore we can be sure that the smaller value of 'c', for $C_{12}^{+}PtF_{6}^{+2-}$ relative to $C_{8}^{+}IrF_{6}^{-}$, must be a consequence of the greater Coulomb attraction, between guest and host, in the platinum salt.

Treatment of C₁₂AsF₆ with AsF₃ leads to consumption of the latter according to equation (2):

$$2C_{12}AsF_6 + AsF_3 \rightarrow 3C_8AsF_5 \tag{2}$$

In a vacuum it loses AsF₅ and AsF₃ as in C₈AsF₅ made directly from graphite and AsF_5 . Similar conversions can be made at other compositions. There is no perceptable change in t/t_0 when AsF₃ is added to or removed from a monolithic sample and X-ray diffraction findings indicate no change in stage. It had previously been observed⁹ that the graphite/AsF₅ stages obey the relationship C_{8n} AsF₅ where n is the stage (see Figure 1). Since C_8AsF_5 can be represented as $C_{12}^+AsF_6^- 1/2AsF_3$ [if the equilibrium for (1) is far to the right] it is reasonable to suppose that the neutral AsF₃ molecules occupy the vacancies in the $C_{12}AsF_{6}$ anion arrangement, as proposed in Figure 2(a). The equality (within experimental error) of the c spacing for C_8AsF_5 [8.05(3) Å] with that for C_{12} +AsF₆⁻ [8.04(3) Å] also agrees with essentially complete conversion of AsF₅ into AsF₆- and AsF₃. Recent EXAFS studies for C_xAsF_5 , C_yAsF_6 , AsF_5 , AsF_3 , and a variety of AsF_6^- salts¹⁰ also indicate that there is unlikely to be more than 5% of free AsF₅ in C₁₀AsF₅ and are fully consistent with the guest species being AsF_6^- and AsF_3 .

With the demonstration that AsF_3 can be removed from C_xAsF_5 , attention must be paid to the preparative conditions for ' $C_x AsF_5$ ' samples, since AsF_3 departure will result in AsF_6^- salt formation. We suggest that the residual compounds are such salts.

We thank the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, EXXON Corporation, and the University of California, Berkeley, Committee on Research for support, and Dr. A. Moore of Union Carbide for a supply of pyrolytic graphite.

(Received, 7th January 1980; Com. 009.)

- ¹ Lin Chun-Hsu, H. Selig, M. Rabinovitz, I. Agranat, and S. Sarig, Inorg. Nucl. Chem. Lett., 1975, 11, 601.
 ² E. R. Falardeau, G. M. T. Foley, C. Zeller, and F. L. Vogel, J. Chem. Soc., Chem. Commun., 1977, 389.
 ³ T. J. Richardson and N. Bartlett, J.Chem.Soc., Chem. Commun., 1974, 427; and N. Bartlett, R. N. Biagioni, E. M. McCarron, B. W. McQuillan, and F. Tanzella, 'Molecular Metals,' ed. W. E. Hatfield, Plenum, New York, 1979, p. 293.
 ⁴ N. Bartlett, R. N. Biagioni, B. W. McQuillan, A. S. Robertson, and A. C. Thompson, J. Chem. Soc. Chem. Commun., 1978, 200.
 ⁵ N. Bartlett, B. W. McQuillan, and A. S. Robertson, Mat. Res. Bull., 1978, 13, 1259.
 ⁶ H. Selig, M. J. Vasile, F. A. Stevie, and W. H. Sunder, J. Fluorine Chem., 1977, 10, 299.

 - ⁷ L. Ebert and H. Selig, *Mat. Sci. Eng.*, 1977, **31**, 177. ⁸ M. J. Moran, J. E. Fischer, and W. R. Salaneck, personal communication.

 - ⁹ E. R. Falardeau, L. R. Hanlon, and T. J. Thompson, *Inorg. Chem.*, 1978, 17, 301.
 ¹⁰ A. S. Robertson, B. W. McQuillan, M. P. Klein, and N. Bartlett, to be published.