Synthesis and X-Ray Crystal Structure of a W ${ }^{\mathbf{v}}$ Metallocycle $\left.\left[\left\{\bar{W}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{\mathbf{2}}-\mathrm{O}\right)_{2} \mathrm{O}\right\}_{2} \mathrm{Mg} \text { (tetrahydrofuran }\right)_{4}\right]$

By Michael F. Lappert* and Colin L. Raston
(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)
and Graham L. Rowbottom and Allan H. White
(Department of Physical and Inorganic Chemistry, The University of Western Australia, Nedlands 6009)

Summary Reaction of $\left[\mathrm{WCl}_{4}(\mathrm{O})\right]$ with either o$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{MgCl}\right)_{2}$ or $\mathrm{Mg}\left\{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}\right\}$ (thf) in tetrahydrofuran (thf) gives the W^{v} complex $\left[\left\{W\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-0\right)_{2}\right.\right.$ $\left.\mathrm{O}\}_{2} \mathrm{Mg}(\mathrm{thf})_{4}\right]$, (1) via W^{v} oxochloride intermediates; single crystal X-ray diffraction of the complex (1) shows that one of the o-xylidene chelating ligands has a large fold angle ($66 \cdot 1^{\circ}, o f .42 \cdot 4^{\circ}$ for the other) possibly owing to an aromatic π-interaction with the tungsten atom.

We report (i) two methods for the synthesis of the W^{v} metallocycle (1) equation (1); (ii) e.s.r. spectroscopic data on its mode of formation from $\left[\mathrm{WCl}_{4}(\mathrm{O})\right]$ and the di-Grignard reagent ${ }^{1} o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{MgCl}\right)_{2}$ in tetrahydrofuran (thf), which indicate two $d^{1} \mathrm{~W}^{\mathrm{v}}$ intermediates [see (2) and (3) in the Scheme] and demonstrate that reduction precedes alkylation; and (iii) the molecular structure of complex (1) (see the Figure), which shows inter alia that one of the bidentate ligands attached to W differs from the other (the 'fold angles' being $42 \cdot 4$ and $66 \cdot 1^{\circ}$, respectively) probably to enable some π-interaction to occur between one of the ligands and the metal. As to (i), compound (1) is the first

(1)

$$
\mathrm{R}=\stackrel{\Gamma}{\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\mathrm{O}\right)_{2}}
$$

stable $\mathrm{W}^{\mathbf{v}}$ organometallic compound \{other than π complexes such as $\left.{ }^{2}\left[\mathrm{~W}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]^{+}\right\}$and is a rare example of a d^{1} metallocycle $\left\{\right.$ the others are $\left[\mathrm{V}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{LL})\right][\mathrm{LL}=$ $2,2^{\prime}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}, \quad 2,2^{\prime}-\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right)_{2}$, or $\left.\quad 1,4-\mathrm{C}_{4} \mathrm{Ph}_{4}\right]^{3} \quad\left[\mathrm{Nb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}-\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{CF}_{3}\right)\right\}_{4}\right]^{4}$ and $\left[\mathrm{Nb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-0\right)\right]$, (4) $\left.{ }^{5}\right\}$, and its preparation is a further illustration that the o -
xylidene ligand, $O-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}$, is capable of stabilising high metal-oxidation states [cf., the $\mathrm{Ti}^{\mathrm{IV}}, \mathrm{Zr}^{\mathrm{rv}}$, or $\mathrm{Hf}^{\mathrm{IV}} d^{\circ}$ analogues ${ }^{1}$ of complex (4)]. A tungsten(vi) oxo-alkyl $\left[\mathrm{W}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{CMe}_{3}\right)_{4}(\mathrm{O})\right]$ has recently been reported. ${ }^{6}$

Scheme. Titration of $\left[\mathrm{WCl}_{4}(\mathrm{O})\right]$ in thf against ca. 0.075 m ${ }_{o}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{MgCl}\right)_{2}$ in thf at -78 to $+20^{\circ} \mathrm{C}$: i, thf, $-78{ }^{\circ} \mathrm{C}$, $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{MgCl}_{2}\right.$: a, 0.5 equiv.; b, 3.5 equiv.

The progressive addition of the di-Grignard reagent (ca. 0.075 m in thf) to $\left[\mathrm{WCl}_{4}(\mathrm{O})\right]$, equation (la), may be monitored both by the obvious colour and simultaneous e.s.r. spectral changes (see the Scheme). The end product, complex ($\mathbf{1}$), is obtained as an orange solution in thf or as red crystals, which crumble in vacuo to a red powder of composition $\left\{\overparen{W}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\mathrm{O}\right)_{2} \mathrm{O}\right\}_{2} \mathrm{Mg}(\text { thf })_{3} \quad\{35 \%$ based on $\left.\left[\mathrm{WCl}_{4}(\mathrm{O})\right]\right\}$. From the $g_{\text {av }}$ values it appears that the firstformed products of reaction (la) are, successively, the species (2) and (3), which are essentially mixed oxochlorides of W^{v}, because $g_{\text {av }}$ for $\left[\mathrm{WCl}_{5}(\mathrm{O})\right]^{2-}$ in aq. HCl was reported to be $1 \cdot 773 .{ }^{7}$ The initial $\mathrm{W}^{\mathrm{VI}} \rightarrow \mathrm{W}^{\mathrm{v}}$ reduction, whether by reaction (la) or l(b), may be concomitant with an intramolecular electron-transfer process in the magnesium reagent, shown in equation (2) for the former case. Thus,

(5)
the o-xylidene ligand may have a similar propensity for oxidation to a quinonoid form [in this case the unstable hydrocarbon (5) which polymerises to $\left.\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{n}{ }^{8}\right]$ as the isoelectronic catecholate dianion. ${ }^{9}$ Consistent with the e.s.r. data, the stoicheiometry of equation (2), and the Scheme, species (2) may be formulated either as $\left[\mathrm{WCl}_{4}(\mathrm{O})\right]^{-}$or $\left[\mathrm{WCl}_{5}(\mathrm{O})\right]^{2-}$.

The electrical conductivity of complex (1) in thf supports the proposed structure rather than the alternative ionic formulation $\left[\mathrm{Mg}(\text { thf })_{4}\right]\left[\begin{array}{l}\left.\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-O\right)_{2}(\mathrm{O})\right]_{2} \text {. The i.r. }\end{array}\right.$ spectrum shows bands at $\vee 1032(\mathrm{~s}), 1023(\mathrm{sh})$, and $1013(\mathrm{~s})$ cm^{-1}, probably due to $v(\mathrm{~W}=\mathrm{O})$ and $\nu_{\text {asym }}(\mathrm{COC})$ of coordinated thf. The solid complex (1) has $g 1.943$. It may be recrystallised from thf-PhMe, but in many nonhalogenated solvents other than thf it decomposes to give a yellow-orange crystalline complex (currently under investigation).

The tungsten environment in complex (1) is square pyramidal (Figure) with the oxygen occupying the apical position at $1 \cdot 71(1) \AA$, typical of strong π-bonding $\{c f$. $l\left(\mathrm{~W}-\mathrm{O}_{\text {terminal }}\right) 1.72 \AA$ in $\left.\mathrm{Ba}\left[\mathrm{W}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}^{10}\right\}$. Two bidentate o-xylidene ligands (' a ' and ' b ') span the basalplane positions with one ligand 'folded' towards the oxygen atom while the other is directed away. The fold angle, defined as the angle between the ligand plane and the WC_{2} plane, for ligand 'a' appears to be 'normal' ($42 \cdot 4^{\circ}$) as the $\mathrm{W}-\mathrm{C}-\mathrm{C}$ angles are close to tetrahedral values. However, for

Figure. Molecular structure of $\left[\left\{\widehat{W}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-0\right)_{2} \mathrm{O}\right\}_{2} \mathrm{Mg} \text { (thf) }\right)_{4}$, (1); for clarity the disordered carbon atoms of the thf ligands are not shown. Unique distances and angles defining the magnesium environment are $\mathrm{Mg}-\mathrm{O}(1) 2 \cdot 07(1)$, $\mathrm{Mg}-\mathrm{O}(\mathrm{a}) 2 \cdot 11(1)$, $\mathrm{Mg}-\mathrm{O}(\mathrm{b}) 2 \cdot 09(1) \AA ; \mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}$ (a) $88.9(5), \mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}$ (b) $90 \cdot 4(6), \mathrm{O}(\mathrm{a})-\mathrm{Mg}-\mathrm{O}$ (b) $88.7(6)^{\circ}$. Similarly for the tungsten environment, $\mathrm{W}-\mathrm{O}(\mathrm{l}) 1 \cdot 71(1)$, W-C(11a) $2 \cdot 16(2)$, W-C(2la) $2 \cdot 16(2)$, W-C(11b) $2 \cdot 14(2)$, W-C(21b) $2 \cdot 18(2) \AA$; C(11a)-W-C(21a) 75•3(9), C(11b)-W$\mathrm{C}(2 \mathrm{lb}) 75 \cdot 8(9), \mathrm{C}(11 \mathrm{a})-\mathrm{W}-\mathrm{C}(11 \mathrm{~b}) 85 \cdot 6(8), \mathrm{C}(21 \mathrm{a})-\mathrm{W}-\mathrm{C}(21 \mathrm{~b}) 86 \cdot 3(9), \mathrm{C}(11)-\mathrm{W}-\mathrm{C}(11) 130 \cdot 1(9), \mathrm{C}(21)-\mathrm{W}-\mathrm{C}(21) 135 \cdot 8(9)$, $\mathrm{O}(1)-\mathrm{W}-\mathrm{C}(11 \mathrm{a})$ $112 \cdot 3(7), \mathrm{O}(1)-\mathrm{W}-\mathrm{C}(11 \mathrm{~b}) 117 \cdot 6(8), \mathrm{O}(1)-\mathrm{W}-\mathrm{C}(2 \mathrm{Ia}) 109 \cdot 8(7), \mathrm{O}(\mathrm{I})-\mathrm{W}-\mathrm{C}(21 \mathrm{~b}) 114 \cdot 4(8)^{\circ}$ 。
ligand ' b ' the fold angle ($66 \cdot 1^{\circ}$) and the reduced W-C-C angles, together with the short W-.--C(11) and C(21) distances $[2.74(2)$ and $2 \cdot 71(2) \AA ; c f .3 \cdot 01(2)$ and $3 \cdot 02(2) \AA$ for 'a'] suggest some π-interaction between the aromatic ring and the metal. The angle subtended by the oxygen bridging the tungsten and magnesium centres is $170 \cdot 4(8)^{\circ}$. The magnesium atom is in an approximately octahedral environment.
Crystal data: $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{MgO}_{6} \mathrm{~W}_{3}, M=1129 \cdot 1$, orthorhombic, space group Pbca, $a=18 \cdot 061(5), \quad b=16 \cdot 759(5), \quad c=$
$15 \cdot 637(5) \AA, U=4733(2) \AA^{3}, Z=4, \quad D_{\mathrm{c}}=1.58 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=66.1 \mathrm{~cm}^{-1}, \quad F(000)=2240, \quad \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=$ $0.71069 \AA$, specimen size: $0.28 \times 0.22 \times 0.14 \mathrm{~mm}, \quad T=$ $295(1) \mathrm{K}$. The crystal structure was solved from 1102 'observed' reflections after absorption corrections and refined to $R=0.047, R^{\prime}=0.050 . \dagger$

We thank the S.R.C. for support.
(Received, 22nd September 1980; Com. 1032.)
\dagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.
${ }^{1}$ M. F. Lappert, T. R. Martin, J. L. Atwood, and W. E. Hunter, J. Chem. Soc., Chem. Commun., 1980, 476.
${ }^{1}$ R. L. Cooper and M. L. H. Green, J. Chem. Soc. A, 1967, 1199.
${ }^{2}$ T. M. Vogelaar-van der Huizen and J. H. Teuben, J. Organomet. Chem., 1976, 105321.
'J. Sala-Pala, J. Amaudrute, J. E. Gurchais, R. Mercia, and M. Cerutti, J. Fluorine Chem., 1979, 14, 269.
${ }^{\circ}$ M. F. Lappert, T. R. Martin, C. R. C. Milne, J. L. Atwood, W. E. Hunter, and R. E. Pentilla, J. Organomet. Chem., 1980, 192, C35.
${ }^{6}$ J. R. M. Kress, M. J. M. Russell, M. G. Wesolek, and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1980, 431.
${ }^{7}$ H. Kon and N. E. Sharpless, J. Phys. Chem., 1960, 70, 105.
${ }^{8}$ I. T. Millar and H. Heaney, O. Rev. Chem. Soc., 1957, 11, 109.
${ }^{\circ}$ Cf., R. M. Buchanan, B. J. Fitzgerald, and C. G. Pierpont, Inorg. Chem., 1979, 18, 3439; L. M. Charney and F. A. Schultz, ibid., $1980,19,1527$ and refs. therein.
${ }^{10}$ S. Khalil, B. Sheldrick, A. B. Soares, and A. G. Sykes, Inorg. Chim. Acta, 1977, 25, L83.

