Asymmetric Synthesis of $\boldsymbol{\beta}$-Lactams

By Czesław Bexżecki and Ewa Rogalska
(Institute of Organic Chemistry of Polish Academy of Sciences, 00-961 Warszawa, Kasprzaka 44, Poland)

Summary The reaction of α-chloroiminium chlorides with imines in which one of reagents contains a chiral substituent leads diastereoselectively to substituted β-lactams.

From the variety of synthetic methods leading to β-lactam systems only a few have been adopted for asymmetric syntheses. ${ }^{1-3}$ The reaction of α-chloroiminium chlorides with imines reported by Ghosez et al., ${ }^{4,5}$ seemed as if it would be very useful for the diastereoselective synthesis of substituted β-lactams.

The inducing chiral centre may be present in either or both substrates. Thus R^{6} in the amide (1) can be chiral as well as R^{5} in the imine (3) (Scheme), and we have examined both possibilities. The reaction of achiral amides (1, $\mathrm{R}^{1}=\mathrm{R}^{2}$) with chiral imines ($3, \mathrm{R}^{5}$ chiral) yielded nonequimolar mixtures of two epimeric β-lactams (7) with a new chiral centre at C-4. A similar reaction with the racemic amide ($\mathbf{1}, \mathrm{R}^{1} \neq \mathrm{R}^{2}$), which becomes sp^{2}-prochiral in the intermediate (5), however, gave a mixture of the four possible diastereoisomers with new chiral centres at C-3 and C-4.

The second approach, i.e. the reaction of chiral amides (1, R^{6} chiral) with prochiral imines, seemed to be more interesting. The inducing centre can be removed and regenerated easily by hydrolysis of the salt (6) yielding a mixture of epimeric ($\mathrm{R}^{\mathbf{1}} \neq \mathrm{R}^{2}$) or enantiomeric ($\mathrm{R}^{\mathbf{1}}=\mathrm{R}^{2}$) β-lactams (7). The β-lactams (7) were prepared by the procedure in refs. 4 and 5 . The appropriate amide (1) was treated with an excess of COCl_{2} giving the salt (2), which was treated without separation with 1 mol. equiv. of the imine (3) and then $\mathrm{Et}_{3} \mathrm{~N}$. Evaporation led to the iminium salt (6) which was hydrolysed with 1 m aqueous NaOH and, after extraction, purified by chromatography $\left(\mathrm{SiO}_{2}\right)$.

The mixtures of diastereoisomers ($\mathbf{7 a - d}$, Table) were separated by h.p.l.c. using three $\frac{3}{4}$ in $\times 1 \mathrm{ft}$ columns filled with 10μ Lichosorb using hexane containing $15-40 \%$ of ethyl acetate as eluant, and a refractive index detector.

Table. Yields and diastereoisomeric (enantiomeric) ratios for the β-lactams (7).

${ }^{\text {a }} \mathrm{A}-\mathrm{D}$ are in the order of the R_{f} value sequence; h.p.l.c. separation and ${ }^{1} \mathrm{H}$ n.m.r. analysis. b Mixtures of enantiomers, the ratio being determined by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy with addition of $\mathrm{E} \cdot \mathrm{u}(\mathrm{tfc})_{3}$ shift reagent. [α] values are for the mixture of enantiomers.

The ratio of diastereoisomers was also determined by ${ }^{1} \mathrm{H}$ n.m.r. integration; compound (7a) (Table), $\delta\left(\mathrm{CCl}_{4}\right)$ (isomer A) : $1.82(\mathrm{CHMePh}, \mathrm{d}, J 7.5 \mathrm{~Hz}$) and $4.17(\mathrm{CHMePh}$, $\mathrm{q}, J 7.5 \mathrm{~Hz}$) ; δ (isomer B) : $1 \cdot 35(\mathrm{CH} M e \mathrm{Ph}, \mathrm{d}, J 7.5 \mathrm{~Hz}$) and 4.98 (CHMePh, q, $J 7.5 \mathrm{~Hz}$) ; A: B ratio, 1:2.7; compound (7b) (Table), $\delta\left(\mathrm{CCl}_{4}\right)$ (isomer A) : $3.97(4-\mathrm{H}, \mathrm{s}), \mathbf{1 . 9}(\mathrm{CHMePh}$, d, $J 7 \mathrm{~Hz}), 4.2(\mathrm{C} H \mathrm{MePh}, \mathrm{q}, J 7 \mathrm{~Hz})$, and 0.72 and 1.27 ($3-\mathrm{Me}_{2}, 2 \mathrm{~s}$) ; δ (isomer B): $3.92(4-\mathrm{H}, \mathrm{s}), 1.52$ ($\mathrm{CHMePh}, \mathrm{d}$), $4.87(\mathrm{CHMePh}, \mathrm{q}, J 7 \mathrm{~Hz})$ and 0.75 and $1.20\left(3-\mathrm{Me}_{2}, 2 \mathrm{~s}\right)$; $\mathrm{A}: \mathrm{B}$ ratio $2: 1$; compound (7e) (mixture of enantiomers) $\delta\left(\mathrm{CCl}_{4}\right) 4.33(4-\mathrm{H}, \mathrm{s}), 2.90(\mathrm{NMe}, \mathrm{s})$ and 0.82 and 0.98 $\left(3-\mathrm{Me}_{2}, 2 \mathrm{~s}\right)$; the enantiomeric ratio of $1: 9$ was determined
from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum following the addition of $\mathrm{Eu}(\mathrm{tfc})_{3}\{$ tris-[3-(2,2,2-trifluoro-1-hydroxyethylidene)-(+)camphorato]europium $\}$.
For pure compounds the specific optical rotations are given in the Table; for compounds (7e) and (7f) the rotation is that for the mixture of enantiomers. For compound (7c) the cis and trans configurations for the A, B and C, D diastereoisomers, respectively, was determined on the basis of the coupling constants $(2.5$ and 0.0 Hz$)$ for 3 - and $4-\mathrm{H}$.

[^0]
[^0]: ${ }^{1}$ C. Bełżecki and Z. Krawczyk, J. Chem. Soc., Chem. Commun., 1977, 302.
 ${ }^{2}$ Z. Krawcyzk and C. Bełżecki, Pol. J. Chem., 1979, 53, 643 ; M. Furakawa, T. Okawara, Y. Noguchi, and Y. Tarawaki, Heterocycles, 1977, 10, 1323.
 ${ }^{3}$ M. Furukawa, T. Okawara, Y. Noguchi, and Y. Tarawaki, Chem. Pharm. Bull. 1978, 26, 260.
 ${ }^{4}$ L. Ghosez, B. Haveaux, and H. G. Viehe, Angew. Chem., Int. Ed. Engl., 1969, 6, 454.
 ${ }^{5}$ M. De Poortere, J. Marchand-Bryndert, and L. Ghosez, Angew. Chem., 1974, 86, 272.

