
76 J.C.S. CHEM. COMM., 1981 

Mode of Enzymic Oxygenation at Primary Carbon Atoms : Stereochemistry 
of Hydroxylation of C-1 Chiral Octanes by Pseudomonas oleovoranst 

By ELIAHU CASPI,* JAMES PIPER, and STUART SHAPIRO 
(The Worcestev Foundation for Experime9ztal Biology, Shvewsbuvy, MA 01545) 

Summary It was shown, using (1R)- and (1.5)- [l-3H,2H,- 
lH ;l4C]octanes, that C- 1 hydroxylation by P. oleovorans 
strain TF4- 1L proceeds with retention of configuration. 

IN contrast to numerous reports on the stereochemistry of 
enzymic hydroxylation of unactivated secondary1 and 
tertiary2 carbon atoms, no published information is avail- 
able on the stereochemistry of hydroxylation of primary 
carbon atoms3 The starting materials (1R)- and (1.5)-[1- 

3H,1H ;14C]octan- l-ols, were synthesized essentially as previ- 
ously de~cr ibed .~  The (1R)-alcohol *as a t  least 95-96% 
pure, since on oxidation with horse liver alcohol dehydro- 
genase [HLAD, EC.1.1.1.11 and NAD it  lost 95-96% of 
tritium. By implication the parent4 (1.5)-octanol must con- 
tain at least 95-96% of (IS)-alcohol. The (1R)- and (1s)- 
octanols were mesylated, then hydrogenolysed (lithium 
triethylborodeuteride in diglyme) to yield ( 1S)-[1-3H,aH,- 
lH;14C]octane {spec. act. ca. 45 pCi 3H p1-l (7.3 mCi 3H 
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mmol-l), [3H: lac] ratio 8-47:1] and (1R)-[1-3H,2H,1H;14C]- 
octane {spec. act. GU. 45 pCi 3H pl-l (7-3 mCi 3H mmol-l), 
[SH : l4C] ratio 8-96 : 1 }, respectively.: 

We found that the method of determining the stereo- 
chemical purity of (1s)-octanol by oxidation with horse 
liver, yeast, or P. oleovorans strain TF4-1L alcohol dehydro- 
genase and measuring the C3H : lac] ratio of the resulting 
aldehyde is not applicable. Apparently the [ l-3H]octanal 
produced (RC3HO) is oxidized enzymically to  octanoic acid5 
at a considerably slower rate than is R14CH0. Consequently, 
the [3H: W ]  ratio of the aldehydes isolated at a given 
point in time (from 7 min to  24 h) was higher (up to 40%) 
than that of the substrate (1s)-alcohol. 

14 Me [CH2ls- CHDOH 

(4 a) 
14 

H 0 C H [C Hz] 6- C H, D 

(4b )  

We then investigated the Gunther, Simon et aZ.6 equilibra- 
tion method, which is presumed to exchange the (111)- 
hydrogen atom excl~sively.~~7 In our hands, both the 
(1R)- and (1s)-hydrogen atoms of [l-3H]octanols were 
exchanged, although the (1.5)-hydrogen was exchanged at 
a considerably slower rate. Under the conditions employed 
by us the (112)-octanol lost all the tritium within 24 h, 
while the (1s)-octanol consistently and reproducibly lost 
30-40y0 of tritium, and (lRS)-[l-3H; l4CIoctanol lost 
65-70~0 of tritium. Based on these observations, deter- 
mination of the overall chirality of the C-1 alcohols obtained 
by enzymic hydroxylation of C-1 chiral octanes was 
possible. 

Assuming that hydroxylation involves a significant iso- 
tope effect K ,  > K ,  > k ,  and proceeds with retention of 
configuration, then (1R)-octane (1) should yield mainly (3) 
and lesser amounts of products of oxygenation of the chiral 
methyl [ (5) > (6) > (7)]. For determination of the stereo- 
chemistry of the hydroxylation reaction, only the chirality 
of the major component of the mixture of C-1 tritiated 
alcohols (5) and (6) need be considered. Should hydroxyla- 
tion of ( 1R)-octane proceed with inversion of configuration, 
then (1R)-octanol will be the major product. Similarly, 
hydroxylation of ( 1s)-octane with retention of configuration 
will yield mainly ( 1R) -octanol, whereas hydroxylation with 
inversion will yield mainly (1s)-octanol. 

Chiral [l-3H,2H,1H]octanes containing the [ l-14C]octane 
(2) were incubated with homogenates of P. oleovorans 
strain TF4-lL,* and the octanols from each incubation were 
recovered and purified to yield ca. 0.75 pCi of [3H]octanol 
per incubation (ca. 1.7% 3H recovered as octanol) admixed 
with [ l-14C]octanols (4). The extent of hydroxylation of 
the chiral methyls was determined by oxidizing aliquots of 
the biosynthesized alcohols with Jones' reagent and 
counting the obtained acids (8)  as their p-toluidides. 

Me [CH,],CO,H (84 

TDHC[CH,],CO,H (8b) 

DH,14C [CH,],C02H (8c) 

Me [CH2],14C02H (8d) 

The Gunther, Simon et al. exchange reactions were 
carried out in parallel using octanols derived enzymically 
from (1R)- and (1s)-octanes and synthetic (1RS)-octanol. 
The tritium lost in the equilibrations of the biosynthesized 
alcohols was corrected for the accompanying loss of (1s) 
tritium.$ From the difference between the tritium content 
at C-1 before equilibration and the corrected amount of 
tritium abstracted during equilibration, the fraction of (1R)- 
octanol in the biosynthetic mixtures was calculated. 

It is evident 
that  hydroxylation of the octanes occurred mainly 
(70-80%) at the achiral methyl (column 3, Table). This 
indicates that enzymic hydroxylation involves a normal 
hydrogen isotope effect. 

The hydroxylations of (1R)-octane gave mixtures of C-1 
tritiated octanols. Equilibration of these mixtures of 
alcohols proceeded with the (corrected) loss of 37-38y0 of 
the tritium at C-1. I t  follows that 37-38y0 of the octanol 
in the mixtures was (1R)-octanol and, hence, the major 

The results are summarized in the Table. 

TABLE. Hydroxylation of (1R)- and (lS)-[1-3H,2H,'H; 14C]octanes by homogenates of Pseudomonas oleovorans strain TF4-iL. 

C-1 chirality Stereochemistry 
of the major of 

% 3H 
Chirality a t  C-1 % of 

octanol h ydrox ylstion 
1 s  Retention 
1R Retention 1 

37 1 s  Retention 
2 1 id 29 74 1R Retention 

Experiment of octane of octanols (lR)-octanol& 
1R 27 38 

21 82 
29 

The average deviation in the [3H : 14C] ratios from successive crystallizations of the acid and alcohol derivatives is h0.05. The 
resulting relative error in the calculated (ref. 9) % of (1R)-octanol determination is & 7 %  (e.g. 38 f 2.7%). 

$ The assignment of the configuration of the chiral octanes rests on the known inversion of configuration in the hydrogenolysis of 

5 The correction was computed on the basis of the amount of tritium lost from (1s)-octanol in the control equilibration of (1RS)- 

methanesulphonyl esters. 

octanol. 
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product of hydroxylation of the chiral methyl terminus of We thank Dr. Raam Mohan (Exxon Research and 
(1R)-octane is (1s)-octanol. In contrast, hydroxylations Engineering Co., Linden, New Jersey) for the gift of P. 
of (1s)-octane gave octanols which on equilibration lost o2eovorans strain TF4-1L. This work was supported by a 
most (74-82%) of the tritium present a t  C-1. Therefore, National Science Foundation grant and a National Institutes 
the major product of hydroxylation of the chiral terminus of Health grant. 
of (1s)-octane is (lR)-octanoZ. These results are consistent 
with the view that the hydroxylation proceeds with re- 
tention of configuration in which mainly a hydrogen atom 
and, to a lesser extent, a deuterium atom is displaced. (Received, 7th October 1980; Corn. 1095.) 
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