
Cation-radical Transfer: Transfer Efficiency in Photosensitized Isomerization Reactions

By TETSUYA GOTOH, MIKIHIKO KATO, MASAHIDE YAMAMOTO,* and YASUNORI NISHIJIMA (Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan)

Summary The efficiency of cation-radical transfer was studied by photosensitized isomerization of cyclobutanes; the exothermic photosensitized isomerization occurs efficiently, while the rate of the endothermic isomerization decreases drastically with increase in the electrontransfer barrier.

RECENTLY a cation-radical transfer mechanism has been reported for the photochemical dimerization of olefins,¹⁻³ and cis-trans-isomerization⁴ and cleavage reaction⁵ of cyclobutane derivatives. However, the transfer efficiency has not yet been studied quantitatively. For charge separation and its utilization, the development of efficient electron-transfer systems is required⁶ and, therefore, studies on electron-transfer processes are fundamentally important. We have investigated the efficiency of cation-radical transfer for various combinations of aromatic hydrocarbons [sensitizer: (S)] and 1,2-diphenylcyclobutanes [reactants: (R); cis-form (1) and trans-form (2)] by monitoring the quantum yields of their photosensitized isomerization reactions.

Irradiation of the system phenanthrene (6) (20 mM)-mdicyanobenzene (20 mM)-(1) (10 mM) in MeCN and in MeCN-MeOH (1:1) by a mercury lamp (Toshiba 300H) through Pyrex glass gave 1-phenyl-1,2,3,4-tetrahydronaphthalene (4) (15% after 10 h irradiation) and 1-methoxy-1,4-diphenylbutane (5) (14%), respectively.[†] As shown in the Scheme, these are the characteristic products via

SCHEME. A = electron acceptor.

the cation-radical intermediate (3) produced by the opening of the 1-2 bond of (1). In this system, the sensitizer (6)is selectively photoexcited[‡] and (1).⁺ is formed by the

 \dagger Alternatively, the reaction could be performed when the charge-transfer band of (1) with 1,2,4,5-tetracyanobenzene was photoexcited, but considerable addition of the acceptor to (1) occurred in this system.

‡ Absorption of (1): $\lambda < 275$ nm.

cation radical-transfer mechanism, i.e., electron-transfer from (1) to (6).⁺. Use of the trans-form (2) in the above system led to a similar reaction to that of (1).

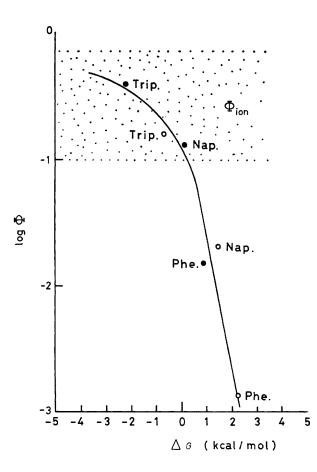


FIGURE. Plots of log Φ vs. ΔG for the photosensitized isomerizations of (1) and (2) by a cation-radical transfer mechanism. (\bullet): (1) (10 mM), (\bigcirc): (2) (10 mM); Phe: phenanthrene (20 mM), Nap: naphthalene (20 mм), Trip: triphenylene (10 mм).

The relationship between the photoisomerization quantum yield Φ and the free-energy change ΔG is shown in the Figure. Quantum yields were measured at 313 nm. ΔG values were calculated from the half-peak oxidation potentials of the sensitizers and reactants shown in the Table by the use of the equation $\Delta G(\text{kcal/mol}) = 23.06$

 $[E_{\mathbf{p}/2}(\mathbf{R})/(\mathbf{R}^+) - E_{\mathbf{p}/2}(\mathbf{S})/(\mathbf{S}^+)]$. In the exothermic region, the photoisomerization occurs efficiently and Φ may be approximated by $\Phi_{\text{ion.}}$, where $\Phi_{\text{ion.}}$ is the ionization quantum yield of (S); in the endothermic region the reaction still occurs but Φ decreases and approaches the value given by $\Phi \propto \Phi_{ion} \exp(-\Delta G/RT)$. These relationships seem to indicate that the rate-determining step is electron transfer rather than the subsequent reactions.

TABLE. Half-peak oxidation potentials^a of (S) and (R).

$E_{p/2}(S/S^+)/V$		$E_{\mathbf{p/2}}(\mathbf{R})$	/R+)/V
Triphenylene Naphthalene Phenanthrene	$1.42 \\ 1.32 \\ 1.29$	(2) (1)	$1.39 \\ 1.33$
Pyrene ^b	1.06		

 $^{\rm a}$ Measured vs. Ag/Ag+ (0.01 m) in MeCN using Et_4N+ClO_4^- as supporting electrolyte at 0.1 V s^-1 scan speed. $^{\rm b}$ Almost no reaction was observed.

As a whole, this photoisomerization by a cation radicaltransfer mechanism is similar to the fluorescence quenching by electron transfer studied extensively by Rehm and Weller.⁷ Hence, it is considered that the reaction may be limited by the mutual diffusion rate of (S).⁺ and (R) in the exothermic region, and by the cation radical-transfer (electron-transfer) rate in the endothermic region.

The cation radical-transfer process could be followed spectroscopically by ruby-laser photolysis (347 nm excitation, 20 ns pulse) of the endothermic system: (6) (20 mM)p-dicyanobenzene (80 mm)-(1) (200 mm) in MeCN solvent. Addition of (1) to the mixture of (6) and p-dicyanobenzene led to a decrease in the absorptions of (3). + at 400, 430, and 900 nm, and a new peak appeared at around 460-480 nm, which can be assigned to a type of cation radical species of (1); the spectrum is comparable with the cationradical spectra of (1) obtained in an isopentane-BuⁿCl glass matrix by γ -irradiation. A slow increase (ca. 120 ns) in the intensity of the 460-480 nm peak and a corresponding decay of the 430 nm peak were observed; this indicates that the rate of the cation radical transfer in the endothermic system is rather slow compared to that of the ordinary diffusion-controlled process.

The authors thank Professor K. Okamoto and Dr. K. Komatsu, Dept. of Hydrocarbon Chemistry, Kyoto University, for the measurements of oxidation potentials.

(Received, 15th October 1980; Com. 1115.)

- ⁵ T. Majima, C. Pac, A. Nakasone, and H. Sakurai, J. Chem. Soc., Chem. Commun., 1978, 490. In their work, a different scheme proceeding via a π complex (SR).⁺ has been proposed.
- ⁶ See for example: M. Calvin, Kagaku (Kyoto), 1978, 33, 254; K. Sauer, Acc. Chem. Res., 1978, 11, 257.
- ⁷ D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259.

¹S. Farid, S. E. Hartman, and T. R. Evans in 'The Exciplex,' ed. M. Gordon and W. R. Ware, Academic Press, New York, 1975, p. 327.
² T. Asanuma, T. Gotoh, A. Tsuchida, M. Yamamoto, and Y. Nishijima, J. Chem. Soc., Chem. Commun., 1977, 485.
³ S. Tazuke and N. Kitamura, J. Chem. Soc., Chem. Commun., 1977, 515.
⁴ T. R. Evans, R. W. Wake, and O. Jaenicke in reference 1, p. 345.
⁵ T. K. Evans, R. W. Wake, and H. Sakurai, J. Chem. Soc., Chem. Commun., 1978, 490. In their work, a discussion of the second second H. Sakurai, J. Chem. Soc., Chem. Commun., 1978, 490.