A One-step Synthesis of Acridines *via* Palladium(II)-catalysed Ring Formation of Allylated Enaminones

By Hideo Iida, Yoshifumi Yuasa, and Chihiro Kibayashi (Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan)

Summary 9-Ethyl-3,4,5,6,9,10-hexahydroacridine-1(2H),-8(7H)-dione (5) and its N-allyl analogue (6) were formed in a one-step ring-forming reaction from both the 2-and/or N-allyl derivatives of 3-aminocyclohex-2-enone (1)—(4) and from the bisenaminone (7), obtained from the N-allylenaminone (2), on treatment with PdCl₂(MeCN)₂.

114

Since the first report of π -allylpalladium compounds in 1957, interest has increased rapidly in their use in organic synthesis. In the expectation that reactions involving π -allylpalladium species would occur, we have used a highly conjugated enamine system bearing one or more allyl groups. We report here a novel one-step acridine synthesis via palladium-assisted ring formation from C^{α} -and/or N-allylated enaminones.

A mixture of the C^{α} -allylenaminone (1)† and 10 mol % of PdCl₂(MeCN)₂ [based on (1)] in tetrahydrofuran (THF) was refluxed for 18 h. The usual work-up followed by silica gel chromatography (CHCl₃) gave a fluorescent product identified as the acridine-dione (5)‡ (26%),§ m.p. 250—253 °C, ν_{max} (CHCl₃) 3400, 3260, 3180, and 1630 cm⁻¹; δ [CDCl₃-(CD₃)₂SO] 0·66 (3 H, t, J 7 Hz, CH₂Me), 1·18—1·46 (2 H, m, CH₂Me), 1·88—2·61 (12 H, 6 × CH₂), 3·99 (1 H, t, J 7 Hz, CHCH₂Me), and 8·88 (1 H, br s, NH).

$$0 \longrightarrow NH_{2}$$

$$0 \longrightarrow NH_{2}$$

$$0 \longrightarrow NH_{2}$$

$$0 \longrightarrow NH_{3}$$

$$0 \longrightarrow NH_{4}$$

$$0 \longrightarrow NH_{5}$$

$$0 \longrightarrow$$

SCHEME. Reagents: i, CH2=CHCH2Br, NaH, toluene.

† Prepared by treatment of 3-aminocyclohex-2-enone with allyl bromide in the presence of sodium hydride in toluene. For an alternative preparation of (1) [and also (3)], see H. Iida, Y. Yuasa, and C. Kibayashi, *Heterocycles*, 1978, 9, 1745.

‡ Satisfactory elemental analyses and spectral data were obtained for all new compounds reported.

§ All yields refer to isolated and purified materials.

When the N-allylenaminone (2), b.p. 165 °C (0·11 mmHg), readily available by condensation of cyclohexane-1,3-dione with allylamine (benzene, reflux, 2 h), was used as a substrate and treated under the same conditions, the acridine (5) was again formed.

The C^{α} , N- and N,N-diallyl derivatives, (3) and (4) respectively, of 3-aminocyclohex-2-enone were then prepared by treatment of (2) with allyl bromide (NaH, toluene, 100 °C, 1 h). Palladium-catalysed reaction of (3) under the same conditions given for (1) afforded the acridine (5) (33%) and its N-allyl analogue (6) (21%), m.p. 131—132 °C; ν_{max} (CHCl₃) 1625 cm⁻¹; δ (CDCl₃) 0·59 (3 H, t, J 7 Hz, CH₂Me), 1·11—1·27 (2 H, m, CH₂Me), 1·82—2·55 (12 H, m, 6 × CH₂), 3·72—3·79 (1 H, m, CHCH₂Me), 4·08—4·12 (2 H, m, NCH₂CH=CH₂), 4·95—5·26 (2 H, m, NCH₂CH=CH₂), and 5·56—5·96 (1 H, m, NCH₂CH=CH₂); λ_{max} (EtOH) 374 (log ϵ 3·15), 269 (3·48), and 248 (3·22) nm. The acridine (5) was also formed on similar treatment of (4) with the palladium complex.

For an alternative synthesis of these acridines the N-allylenaminone (2) was allowed to react with propional-dehyde in the presence of boron trifluoride-diethyl ether (benzene, room temperature, 24 h) to give the bisenaminone (7) (R = allyl), m.p. 37—38 °C, $\nu_{\rm max}$ (CHCl₃) 3240, 3125, 1630, and 1600 cm⁻¹; δ (CDCl₃) 0·78 (3 H, t, J 7 Hz, CH₂Me), 1·74—1·99 (6 H, m, 3 × CH₂), 2·04—2·64 (8 H, m, 4 × CH₂), 3·77—3·88 (4 H, m, 2 × NCH₂CH=CH₂), 4·(4 (1 H, t, J 7 Hz, CHCH₂Me), 5·01—5·06 [2 H, m, 2 × CH₂CH=CH(cis)H], 5·17 [2 H, approx. s, 2 × CH₂CH=CH-(trans)H], 5·66—6·03 (2 H, m, 2 × NCH₂CH=CH₂), and 8·97 and 9·88 (each 1 H, br s, NH). Treatment of this com-

pound with 5 mol % of PdCl₂(MeCN)₂ (THF, reflux, 24 h) afforded the acridines (6) (66%) and (5) (24%), which were identical in all respects with compounds obtained by the foregoing method.

From these results the bisenaminones (7) (R = H, allyl) can be postulated as intermediates for acridine formation via routes a, c, and d (Scheme). Other routes b and e, from (2) and (4), may involve [3,3] sigmatropic rearrangements of (2) to (1) and (4) to (3), respectively, thus being related to routes a and c, respectively. Although these reactions to give acridines imply that several reactions involving π -allylpalladium species are occurring, the detailed mechanisms are not yet clear.

(Received, 20th October 1980; Com. 1131).

 $^{^1}$ P. E. Slade, Jr. and H. B. Janassen, J. Am. Chem. Soc., 1957, **79**, 1277. 2 For a recent review, see B. M. Trost, Tetrahedron, 1977, **33**, 2615.