Synthesis of [18F]XeF₂, a Novel Agent for the Preparation of ¹⁸F-Radiopharmaceuticals By Gary Schrobilgen,* Gunter Firnau,* Raman Chirakal, and E. Stephen Garnett (Departments of Chemistry and Nuclear Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada) Summary [\$^18F]XeF_2 was synthesised by isotopic exchange between XeF_2 and anhydrous reactor-produced [\$^18F]HF, [\$^18F]SiF_4, and [\$^18F]AsF_5 with a radiochemical yield of \$30\%; [\$^18F]XeF_2 may facilitate the direct radiofluorination of organic tracer molecules for positron emission tomography. XENON DIFLUORIDE, XeF₂, has been shown to fluorinate a variety of organic compounds mildly and rapidly.¹ Recently, we have synthesised the L-stereoisomer of fluorodopa† by direct fluorination with XeF₂.² Fluoro-dopa, labelled with the positron-emitting isotope ¹⁸F ($t_{\frac{1}{2}}$ 110 min), is used to measure, in vivo and atraumatically, the cerebral metabolism of the neurotransmitter dopamine.³ Before the XeF₂ method can be applied to radiofluorinations of biomolecules, such as fluoro-dopa, labelled XeF_2 must be made available. Therefore, we report the synthesis of [18F]XeF₂ by exchange labelling from reactor-produced 18F-. In a typical experiment, Li₂CO₃ (95% enriched in ⁶Li) was irradiated with thermal neutrons in the McMaster 5-megawatt nuclear reactor for 3 h.4 The irradiated Li₂CO₃ was dissolved in 4 m H₂SO₄. The acid mixture was heated and water containing carrier-free H¹⁸F and traces of H₂SO₄ was distilled off. It was then neutralised with an aqueous solution of Bu₄ⁿNOH and evaporated to dryness in vacuo at 50 °C. The residue of Bu₄ⁿN¹⁸F and (Bu₄ⁿN)₂SO₄ was dissolved in dry MeCN and transferred to an FEP vessel.‡ The mixture was evaporated to dryness at 40 °C in vacuo. Sulphuryl chloride fluoride was chosen as solvent for the exchange reaction because of its resistance to oxidative fluorination by XeF2. Spectroscopic grade SO2CIF was condensed on to the dried residue at -196 °C, followed by condensation of anhydrous HF (0.3 mmol). The solution was warmed to, and maintained at, 40 °C for 20 min. Both SO₂ClF and [18F]HF were vacuum-distilled into an FEP vessel that contained XeF_2 (0.67 mmol) at -196 °C. Thus, 90% of the ¹⁸F-activity was freed from the Bu₄ⁿNF. The exchange between XeF2 and [18F]HF was allowed to proceed for 20 min at 40 °C. After removal of the SO₂CIF and HF under dynamic vacuum at -48 °C, dry crystalline [18F]XeF₂ remained (0.59 mmol, 88% chemical yield; 31% radiochemical yield). The identity and purity of the labelled XeF₂ were established by laser Raman spectroscopy on the solid at -196 °C. The activity remaining in the solvent, presumably [18F]HF, was absorbed on to NaF as [18F]Na+HF₂-. When the solvent, SO₂ClF, was distilled off, ¹⁸F was completely absorbed on NaF. Thus, the fluorine of the solvent, SO₂ClF, is shown to be non-labile. Hydrogen fluoride presumably acts as a weak fluoride acceptor towards XeF2, promoting exchange according to equilibria (1) and (2). The existence of the proposed inter- $$XeF_2 + XeF^+ \rightleftharpoons Xe_2F_3^+$$ (1) $$XeF_2 + A \rightleftharpoons XeF^+ + AF^-$$ (2) $$A = HF$$, SiF_4 , or AsF_5 mediate xenon species, XeF+ and Xe₂F₃+, has been well established both in solution⁵ and in the solid state.⁶ It is noteworthy that no significant exchange between XeF, and H18F was observed to occur in water.7 Analogous exchanges were found to occur when we used SiF₄ or AsF₅ in place of HF. While stable adducts possessing the formulations XeF+AsF₆ and Xe₂F₃+AsF₆ are known,6 silicon tetrafluoride, a weak fluoride acceptor, is not known to form stable adducts with any of the binary xenon fluorides. However, the weak fluoride acceptor GeF₄ and the strong xenon fluoride base, XeF₆, form the stable adduct, XeF₆·GeF₄ (XeF₅+GeF₅-).8 We found that no exchange occurs between ¹⁸F- and XeF₂ in the absence of HF, SiF₄, or AsF₅. We propose that the mechanism represented by equilibria (1) and (2) is also responsible for these isotopic exchanges. Weak fluoride acceptors, in general, provide a means to exchange anhydrous 18F- with XeF2 and, possibly, other xenon fluorides. We expect that [18F]XeF₂ will become a highly useful intermediate for the radiofluorination of a wide variety of medically important ¹⁸F-tracers, such as 2-deoxy-2-fluoroglucose9 and fluoro-dopa.2 (Received, 25th November 1980; Com. 1257.) † Fluoro-dopa = L-3,4-dihydroxy-6-fluorophenylalanine. $\ensuremath{\ddagger}\ FEP = a$ copolymer of perfluoropolyethylene and perfluoropolypropylene. - R. Filler, Isr. J. Chem., 1978, 17, 71. G. Firnau, R. Chirakal, S. Sood, and E. S. Garnett, Can. J. Chem., 1980, 58, 1449. E. S. Garnett, G. Firnau, C. Nahmias, S. Sood, and L. Belbeck, Am. J. Physiol., 1980, 238, R318. - ⁴ P. K. H. Chan, G. Firnau, and E. S. Garnett, Radiochem. Radioanal. Lett., 1974, 19, 237. ⁵ R. J. Gillespie, A. Netzer, and G. J. Schrobilgen, Inorg. Chem., 1974, 13, 1455. ⁶ N. Bartlett and F. O. Sladky, 'Comprehensive Inorganic Chemistry,' ed. A. F. Trotman-Dickenson, Pergamon Press, Oxford, 1973, Vol. 1, pp. 275—279. ⁷ E. H. Appleman, Inorg. Chem., 1967, 6, 1268. ⁸ K. E. Pullen and G. H. Cady, Inorg. Chem., 1967, 6, 1300. ⁹ W. Korytnyk and S. Valentekovic-Horvat, Tetrahedron Lett., 1980, 21, 1493.