$\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl} \cdot$ tetrahydrofuran. Oxidative-addition and Related Reactions

By Richard G. Finke,* Yoshiki Hirose, and Glen Gaughan (Department of Chemistry, University of Oregon, Eugene, Oregon 97403)

Summary The first examples of organoactinide oxidativeaddition of alkyl halides are reported, reactions which
proceed at unprecedented rates; the results presented include the stoicheiometries of these reactions, the new
complexes $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UX}_{2}, \quad\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UX}(\mathrm{Y})$, and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}-$ $\mathrm{UY}(\mathrm{R})(\mathrm{X}, \mathrm{Y}=\mathrm{Br}, \mathrm{I})$, the series of halide exchange equilibria by which these new complexes are formed, determination of the appropriate equilibrium constants to $\pm 10 \%$, independent syntheses for these new complexes, and evidence for a previously unknown type of UIII to UIV redox-halide exchange equilibrium and its equilibrium constant.

The class of reactions known as oxidative-additions occupies a position of fundamental importance in organotransition metal chemistry. ${ }^{1}$ Herein we report the first alkyl halide oxidative-additions in organoactinide chemistry, reactions which proceed at rates unprecedented in organotransition metal chemistry. ${ }^{2}$

Samples of green, formally UiII, $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl} \cdot \mathrm{THF}$, (1) ($\mathrm{THF}=$ tetrahydrofuran), used in this work were prepared by the published procedure. ${ }^{3}$. Freshly prepared (1) is analytically pure, is monomeric in benzene by cryoscopy, is quite O_{2}-sensitive, and exhibits an $E_{1 / 2}\left(\mathrm{U}^{\text {IV }} / \mathrm{U}^{I I I}\right)$ at $c a$. -1.3 V vs. saturated calomel electrode by cyclic voltammetry ($\mathrm{Pt}, \mathrm{MeCN}, 0 \cdot 1 \mathrm{~m} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$).

Green, $\lambda_{\max } 740 \mathrm{~nm}$, benzene solutions of (1) react immediately upon mixing with $\mathrm{PhCH}_{2} \mathrm{Cl}, \mathrm{Me}_{3} \mathrm{CCH}_{2} \mathrm{Cl}$, $\mathrm{Me}_{3} \mathrm{CCl}, 1$-adamantyl chloride, $\mathrm{Bu} \mathrm{Cl}, \stackrel{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Cl}}{ }$, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{MeI}, \mathrm{MeBr}, \mathrm{PhCH}_{2} \mathrm{I}$, and I_{2}. Although H_{2} fails to react ($1 \mathrm{~atm}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}$, by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy), PhCl reacts with $t_{1 / 2} c a .3 \mathrm{~min}$ [PhCl and (1) each $0.06 \mathrm{~m}]$ for the usual green to red colour change. Using $100 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectroscopy, \dagger the loss of RX and loss of (1) ($\delta-4 \cdot 2, \mathrm{C}_{5} \mathrm{Me}_{5}$, l.w. ${ }_{1 / 2}=125 \mathrm{~Hz}_{\ddagger}^{+}$) were observed with the appearance of $\operatorname{red}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}\left(\delta 12 \cdot 7\right.$, l.w. $._{1 / 2}=$ $66 \mathrm{~Hz})$, red to black ${ }^{3 b}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{R})\left(\delta 7 \cdot 7-10\right.$, l.w. ${ }_{\cdot 1 / 2}=$ 6 Hz), and the appearance of organic dimers (R-R), olefins $[\mathrm{R}(-\mathrm{H})]$, and alkanes (RH) characteristic of an R . intermediate was observed. The observed stoicheiometries, equation 3, can be considered as arising from a plus b ratios, respectively, of parallel reactions, equations 1 and 2.

$$
\begin{align*}
& a\left\{1\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl} \cdot \mathrm{THF}+1 \mathrm{RCl}\right. \\
& \rightarrow \mathbf{1}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2} \\
&+1(\text { total })[\mathrm{R}-\mathrm{R}, \mathrm{R}(-\mathrm{H}), \mathrm{RH}] \\
&+1 \mathrm{THF}\} \tag{1}\\
& b\left\{2\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl} \cdot \mathrm{THF}+1 \mathrm{RCl}\right. \\
& \rightarrow 1\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2} \\
&+1\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{R}) \\
&+2 \mathrm{THF}\} \tag{2}
\end{align*}
$$

$$
\begin{align*}
(a+2 b)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl} \cdot \mathrm{THF}+(& a+b) \mathrm{RCl} \\
& \rightarrow(a+b)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2} \\
& +b\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{R}) \\
& +a(\text { total) })[\mathrm{R}-\mathrm{R}, \mathrm{R}(-\mathrm{H}), \mathrm{RH}] \\
& +(a+2 b) \mathrm{THF} \tag{3}
\end{align*}
$$

For example the stoicheiometry observed for $\mathrm{PhCH}_{2} \mathrm{Cl}$ [i.e. the $(a+2 b) /(a+b)$ ratio] (equation 3) was $1 \cdot 0 / 1$ with

1 mol of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}$, no $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\delta 9 \cdot 45)$, and 0.48 mol of $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ observed by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy for each mol of $\mathrm{PhCH}_{2} \mathrm{Cl}$ consumed. For $\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{Cl}$ oxi-dative-addition, 1 mol of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}, 0 \cdot 12 \mathrm{~mol}$ of $\mathrm{Me}_{3} \mathrm{C}-$
 observed in a $1.0 / 1$ stoicheiometry reaction. ${ }^{4}$ For RCl with less bulky alkyls or which correspond to less stable R•, the observed stoicheiometries approach the limiting $2 \cdot 0 / 1$ stoicheiometry reaction of equation 2, a stoicheiometry characteristic of atom abstractors like ${ }^{5} \mathrm{Co}(\mathrm{CN})_{5}{ }^{3-}$; 2 CoII $+1 R X \rightarrow$ IR-Co ${ }^{\text {III }}+1 \mathrm{X}-\mathrm{Co}^{\text {III }}$. In the case of $\mathrm{Bu}^{\mathrm{n} C l}$, 1.55 mol of (1) were consumed for each mol of $\mathrm{Bu} \mathrm{n}^{\mathrm{Cl}}$, with 0.55 mol of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}\left(\mathrm{Bu}^{\mathrm{n}}\right)\left[\delta 7.75\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right),-9.35\right.$ ($\mathrm{t}, J 7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$) $,-17 \cdot 6\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right),-30 \cdot 1$ (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$), and $\left.-90.8\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)\right]$ and 0.25 mol of the dimer, octane, ${ }^{4}$ present, by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. Both cyclopropylmethyl chloride and 4-chlorobut-1-ene gave ca. 30% of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)\left(\delta 8 \cdot 50, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$ initially, thereby providing good evidence for the equili-
brium ${ }^{6} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2}{ }^{\bullet} \rightleftharpoons . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, and thus the intermediacy of radicals in these oxidative-addition reactions.

The oxidative-addition of alkyl iodides or bromides is interesting in that products containing all the possible halide combinations are observed. For example, MeI oxidative-addition shows 2 mol of ($\mathbf{1}$) consumed for each mol of MeI with 0.31 mol of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}(\delta 12.7), 0.25 \mathrm{~mol}$ of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{I})(\delta 14 \cdot 7), 0.03 \mathrm{~mol}$ of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}_{2}(\delta 16 \cdot 8)$, 0.19 mol of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{Me})(\delta 8.75)$, and 0.22 mol of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}-$ $\mathrm{UI}(\mathrm{Me})(\delta 10 \cdot 40)$ as products. The ${ }^{1} \mathrm{H}$ n.m.r. product assignments are supported by independent syntheses using $\mathrm{BI}_{3}\left[3\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}+2 \mathrm{BI}_{3} \rightarrow 3\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}_{2}+2 \mathrm{BCl}_{3}\right]$, using $\mathrm{I}_{2}+(\mathbf{1})$, and by the internal consistency of the ${ }^{1} \mathrm{H}$ n.m.r. chemical shifts. In all cases so far, the observed chemical shifts are to smaller δ values in the order (downfield) $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$ (upfield) for the complexes $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UX}(\mathrm{Y})$, $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UX}(\mathrm{R})$, and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UX}_{2} \quad(\mathrm{X}, \mathrm{Y}=\mathrm{I}, \quad \mathrm{Br}, \mathrm{Cl}) . \S$ These additional organouranium products containing all the possible halide combinations are, in all probability, due to the reasonably facile halogen and/or alkyl exchange or redistribution equilibria, \uparrow equations 4,5 , and 6 with K_{4} $=1.3 \pm 0.1, K_{5}=0.11 \pm 0.01, K_{6}=K_{4} \times K_{5}=0.15 \pm$ 0.01 (at $39^{\circ} \mathrm{C}$ in benzene) subsequent to the initial oxidativeaddition reaction. The presence of these equilibria was confirmed and their equilibrium constants were measured by the addition of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}$ to the ($\mathbf{1}$)-plus-MeI product mixture. The new position of the equilibria, as monitored by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy, was established in quantitative accordance with equations 4,5 , and 6 , their equilibrium constants, and the law of mass action. For MeBr addition, the bromide equilibria corresponding to equation 4,5 , and 6 have $K_{4}=0.49 \pm 0.05, K_{5}=0.36 \pm 0.04, \quad$ and $K_{6}=$ $0 \cdot 18 \pm 0 \cdot 02$, respectively, at $39{ }^{\circ} \mathrm{C}$ in benzene. A similar set of halide redistribution equilibria are known for $\mathrm{Cp}_{2} \mathrm{MX}_{2}$ $(M=T i, Z r, H f) .{ }^{7}$
\dagger Unless stated otherwise, all chemical shift values are $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $39{ }^{\circ} \mathrm{C}$, and are temperature-dependent.
\ddagger L.w. ${ }_{\cdot 1 / 2}=$ line width at half height.
§ A similar situation occurs in Ti and Zr chemistry (ref. 7).
IT The ${ }^{1} \mathrm{H}$ n.m.r. slow exchange limit is observed, however, at $39^{\circ} \mathrm{C}$. Marks has found (ref. 3a), consistent with what we observe, that the following equilibrium exists and lies predominantly to the right: $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UMe}_{2}+\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2} \rightleftharpoons 2\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{Me})$.

$$
\begin{align*}
\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{Me})+\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{I}) & \stackrel{K_{4}}{\rightleftharpoons}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}(\mathrm{Me}) \\
& +\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2} \tag{4}\\
& K_{5} \\
\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}(\mathrm{Me})+\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{I}) & \stackrel{\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{Me})}{\rightleftharpoons} \\
& +\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}_{2} \tag{5}
\end{align*}
$$

$2\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{I})$	K_{6}
	$\stackrel{\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}}{ }$
	$+\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}_{2}$

A second type of exchange reaction was discovered during the oxidative-addition of $\mathrm{MeI}, \mathrm{PhCH}_{2} \mathrm{I}$, or I_{2} in the presence of an excess of (1). The sequential addition of (1) to the products of the I_{2} reaction confirmed that the new species was $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI} \cdot \mathrm{THF}\left(\delta-1 \cdot 1\right.$, l.w. $\mathrm{w}_{\cdot 1 / 2}=62 \mathrm{~Hz}$) and that
it was formed by the UIII, UIV redox-halide exchange equilibria, equations 7 and 8 , with $K_{7}=20 \pm 2$ and $K_{8}=$ $19 \pm 2\left(39^{\circ} \mathrm{C}\right.$ in benzene).

$$
\left.\begin{array}{rl}
\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI}_{2}+(\mathbf{1}) \stackrel{K_{7}}{\rightleftharpoons}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UI} \cdot \mathrm{THF} \\
& +\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}(\mathrm{I})
\end{array}\right)
$$

An initial mechanistic study of these facile oxidativeaddition reactions has also been completed. ${ }^{2}$

Financial support through an N.S.F. grant and a grant from Chevron Research is gratefully acknowledged.
(Received, 4th November 1980; Com. 1186.)
${ }^{1}$ J. P. Collman and L. S. Hegedus, 'Principles and Applications of Organotransition Metal Chemistry,' University Science Books, Mill Valley, California, 1980, ch. 4.
${ }^{2}$ Further details will be published elsewhere: R. G. Finke, D. A. Schiraldi, and Y. Hirose, J. Am. Chem. Soc., 1981, in the press.
${ }^{3}$ (a) J. M. Manriquez, P. J. Fagan, and T. J. Marks, J. Am. Chem. Soc., 1978, 100, 3939; (b) J. M. Manriquez, P. J. Fagan, T. J. Marks, S. H. Vollmer, C. S. Day, and V. W. Day, ibid., 1979, 101, 5075 \{pure ($\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl} \cdot \mathrm{THF}$ was obtained by THF addition to $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}\right]_{3}$ prepared from $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \cup \mathrm{UCl}(\mathrm{Me})$ and H_{2}. $\mathrm{Na}(\mathrm{Hg})$ reduction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}$ gives $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}-\cdot \mathrm{Na}^{+}$rather than the desired product \}; (c) P. J. Fagan, J. M. Manriquez, and T. J. Marks in 'Organometallics of the F-Elements,' eds. T. J. Marks and R. D. Fischer, D. Reidel Publishing Co., Dordrecht, 1979.
${ }_{4}$ Known k (disproportionation) k (combination) values for $\mathrm{Me}_{3} \mathrm{C}$. and Bu^{n}. are $7 \cdot 2$ and $0 \cdot 14$, respectively: R. A. Sheldon and J. K. Kochi, J. Am. Chem. Soc., 1970, 92, 4395.
${ }^{5}$ J. Halpern and J. P. Maher, J. Am. Chem. Soc., 1965, 87, 5361 ; J. Kwiatek, and J. K. Seyler, J. Organomet, Chem., 1965, 3, 421. ${ }^{6}$ P. J. Krusic, P. J. Fagan, and J. San Filippo, Jr., J. Am. Chem. Soc., 1977, 99, 250; A. Effio, D. Griller, K. U. Ingold, A. L. J. Beckwith, and A. K. Serelis, ibid., $1980,102,1734$.
${ }^{7}$ P. M. Druce, B. M. Kingston, M. F. Lappert, T. R. Spalding, and R. C. Srivastava, J. Chem. Soc. A, 1969, 2106. Here $K_{\text {eq }}=$ 0.24 ± 0.03 for $2 \mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{Br}) \rightleftharpoons \mathrm{Cp}_{2} \mathrm{TiCl}_{2}+\mathrm{CP}_{2} \mathrm{TiBr}_{2}$ at $38^{\circ} \mathrm{C}$ in THF, equal to the statistical value for random redistribution, $K_{\mathrm{eq}}=$ $(1 / 2)^{\frac{2}{2}}=0.25$.

