On the Symmetry of (-)-1,3,5,7-Tetrakis[2-(1S,3S,5R,6S,8R,10R)-D \mathbf{D}^{-} trishomocubanylacetoxymethyl]adamantane

By Kurt Mislow
(Department of Chemistry, Princeton University, Princeton, New Jersey 08544)

Summary The highest symmetry attainable by the title compound is D_{2}, not T as previously claimed.

In a recent report ${ }^{1}$ describing the synthesis of the title compound, it was asserted that the latter represented the first optically active organic molecule with T symmetry. However, the interposition of the acetoxymethyl $\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2}\right)$ groups destroys all threefold symmetry inherent in the four $2-D_{3}$-trishomocubanyl groups and in the adamantane skeleton, and T symmetry is $i p s o$ facto unattainable for any conceivable conformation. The title compound therefore belongs in the same class with McCasland's pentaerythritol tetra-(-)-menthyloxyacetate: ${ }^{2}$ in both molecules, four asymmetric units (menthyloxyacetoxymethyl groups in

McCasland's compound and 2- D_{3}-trishomocubanylacetoxymethyl groups in the title compound) of like chirality and of known absolute configuration are attached at the four vertices of a tetrahedral frame (methane in McCasland's compound and adamantane in the title compound), and the highest attainable symmetry is $D_{2}{ }^{3}$ Although neither molecule possesses T symmetry, when viewed as non-rigid systems both belong to the molecular symmetry group $\left(C_{1}\right)^{4} \wedge T$, a group of order 12 which is isomorphic to the point group $T,{ }^{4}$ and which may be represented by the alternating group of permutations A_{4}.
I thank the National Science Foundation for support of this work.
(Received, 18th November 1980; Com. 1235.)

[^0]
[^0]: ${ }^{1}$ M. Nakazaki and K. Naemura, J. Chem. Soc., Chem. Commun., 1980, 911; J. Org. Chem., 1981, 46, 106.
 ${ }^{2}$ G. E. McCasland, R. Horvat, and M. R. Roth, J. Am. Chem. Soc., 1959, 81, 2399.
 ${ }^{3}$ M. Farina and C. Morandi, Tetrahedron, 1974, 30, 1819.
 ${ }^{4}$ L. D. Iroff and K. Mislow, J. Am. Chem. Soc., 1978, 100, 2121.

