Spectro-electrochemical Studies on Tris-bipyridyl Ruthenium Complexes; Ultra-violet, Visible, and Near-infrared Spectra of the Series [Ru(bipyridyl)₃]^{2+/1+/0/1-}

By GRAHAM A. HEATH* and LESLEY J. YELLOWLEES (Department of Chemistry, University of Edinburgh, Edinburgh EH9 3]])

and PAUL S. BRATERMAN*

(Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary The in situ electrochemical reduction of $[\operatorname{Ru}(\operatorname{bipy})_3]^{2+}$ allows comparison of absorption spectra for the series of tris-bipyridyl complexes $[\operatorname{Ru}(\operatorname{bipy})_3]^z$ with z = 2+, 1+, 0, and 1-.

In common with other tris-bipyridyl complexes, $[\operatorname{Ru}(\operatorname{bipy})_3]^{2+}$ (1, z = 2+) shows a rich redox chemistry, and voltammetric studies have established an extended

sequence of reversible one-electron reduction steps at narrowly spaced potentials, as well as a metal-based oxidation (Table 1).^{1,2} The absorption and luminescence

IABLE 1. Electrode potentials for
$$[Ru(bipy)_3]^z$$
, $E^{\circ}/V.^a$ $[Ru]^{2+} \longrightarrow [Ru]^{1+} \longrightarrow [Ru]^0 \longrightarrow [Ru]^{1-} \longrightarrow [Ru]^{2-b}$ -1.06 -1.24 -1.49 -2.17

 $^{\rm a}$ Vs. standard hydrogen electrode (S.H.E.). $^{\rm b}$ [Ru(bipy),]²⁻ is short-lived, releasing bipy.²

spectra of $[Ru(bipy)_3]^{2+}$ have received considerable study, partly owing to this compound's prominence in discussion of suitable redox-active dyes for photogalvanic devices, and in the photocatalysed splitting of water.³ $[Ru(bipy)_3]^{1+}$ is an intermediate in the reductive quenching of * $[Ru(bipy)_3]^{2+}$ and there are varying descriptions of the structure and origin of its intense visible absorption.⁴⁻⁸ $[Ru(bipy)_3]^0$ efficiently reduces H₂O to H₂, in contrast to $[Ru(bipy)_3]^{+,9}$ and there is an earlier report of electrogeneration of $[Ru(bipy)_3]^0$ and $[Ru(bipy)_3]^{1-,2}$ However, no spectroscopic data have been published for these loweroxidation state species.

We now report that controlled electrochemical reduction of $[Ru(bipy)_3]^{2+}$ in an optically transparent cell has enabled us to determine the absorption spectra of the individual low-valent complexes over a wide range. A very simple progression in the spectra emerges, and provides fresh insight into the electronic structure of the reduced species.

Solutions of $[\operatorname{Ru}(\operatorname{bipy})_3][\operatorname{BF}_4]_2$ (1 mmol l^{-1}) in dry acetonitrile, propylene carbonate, or dimethyl sulphoxide containing 0·1 M Bu₄NBF₄ were purged with argon and reduced at a gold minigrid optically transparent thin-layer electrode¹⁰ mounted in a gas-tight poly(tetrafluoroethylene) cell block in the spectrometer beam (Unicam SP800 and Beckman 5270). Steady-state spectra for (1) with z =1+, 0, and 1-, at applied potentials of $-1\cdot 2$, $-1\cdot 4$, and $-1\cdot 7$ V respectively (vs. S.H.E.), were recorded in the range 40,000-7,000 cm⁻¹ using a Metrohm E506 potentiostat.

A notable finding in the present study is that the fully reduced species $[Ru(bipy)_3]^{1-}$ shows a detailed resemblance

in band positions and structure to $[Mo(CO)_4(bipy)]^{1-}$ and Na(bipy), which both contain the chelated bipy⁻ radical anion.^{11,12} It is also apparent from the tabulated data, and particularly from the Figure, that the stepwise reduction is accompanied by *progressive* growth of the bands which typify $[Ru(bipy)_3]^{1-}$, and by matching loss of the bands characterising $[Ru(bipy)_3]^{2+}$, with only minor frequency shifts. In the richer spectra associated with the intermediate complexes, both sets of bands are evidently present. This behaviour is difficult to reconcile with charge-averaged models arising from population of delocalised molecular orbitals spanning three ligands in D_3 symmetry.

On the evidence of the number, position, structure, and intensity of the observed spectral features the reduced ruthenium complexes are most realistically formulated with distinct bipy and bipy- ligands, i.e. as [Ru(bipy)2-(bipy⁻)]¹⁺, [Ru(bipy)(bipy⁻)₂]⁰, and [Ru(bipy⁻)₃]¹⁻, respectively. It is then possible to make general assignments of the observed bands in every case, as indicated in Table 2. For example, the prominent band envelope near 20,000 cm^{-1} for $[Ru(bipy)_3]^{1+}$ is dominated by bipy- internal $\pi \rightarrow \pi^*$ transitions with $M \rightarrow L(bipy^0)$ charge transfer providing only a high energy shoulder, † contrary to previous assignments.⁴⁻⁸ It also follows that a trappedelectron model [Ru^{III}(bipy)₂(bipy⁻)]²⁺ deserves consideration in relation to the spectrum of $*[Ru(bipy)_3]^{2+}$ which resembles that of Na(bipy) in crucial respects, though a delocalised model has been preferred.13

Our observations indicate that $[Ru(bipy)_3]^0$ is a diradical, contrary to the diamagnetic formulation proposed on the basis of early e.s.r. results and a delocalised model.² In the case of successive reductions of $[Ir(bipy)_3]^{3+}$, Hanck and his co-workers have drawn similar conclusions from the spacing of the electrode potentials.¹⁴ We note that a similar E^0 sequence exists for $[Ru(bipy)_3]^{2+}$.[‡]

Interestingly, the lower-valent ruthenium complexes are subject to continuous thermal bleaching (reversion to

FIGURE. Absorption spectra of $[\operatorname{Ru}(\operatorname{bipy})_3]^z$ complexes: (a) z = 2+; (b) z = 1+; (c) z = 0; (d) z = 1-; complexes dissolved in dimethyl sulphoxide (u.v.-visible region, $\epsilon =$ optical extinction coefficient in mol⁻¹ dm³ cm⁻¹) and propylene carbonate (near-i.r. region, A = relative absorbance in arbitrary units).

 $[Ru(bipy)_3]^{3+}$ under the experimental conditions of neari.r. irradiation. Studies are continuing in order to provide extinction coefficients and a definitive near-i.r. spectrum of $[Ru(bipy)_3]^{1-}$, though the trend in spectral features is

[Ru(bipy) ₃] ²⁺	$\pi \rightarrow \pi^*$, bipy 35.0(6.12)	<i>π→π</i> *, bipy- 	M→L, bipy 22·0(1·11)	$\pi \rightarrow \pi^*$, bipy-	$\pi \rightarrow \pi^*$, bipy-
[Ru(bipy) ₈]+	34·2(4·44)	29·2(1·43)ª	21.1(1.01)	$\frac{19 \cdot 9(1 \cdot 09)}{18 \cdot 9(1 \cdot 04)}$	12.8 11.5 10.1
[Ru(bipy) ₃] ⁰	33-8(3-47)	29·0(2·29)ª	20·8(sh)	$\frac{19 \cdot 5(1 \cdot 20)}{18 \cdot 4(1 \cdot 18)}$	12·7 11·1 10·0
[Ru(bipy) ₃]-b	_	29-8(3-50) ^a	_	$\frac{18 \cdot 9(1 \cdot 26)}{18 \cdot 0(1 \cdot 28)}$	${f not}$ established
Na(bipy)-tetrahydrofuran ¹² c		25.9(2.95)	—	$\frac{18 \cdot 8(0 \cdot 62)}{17 \cdot 8(0 \cdot 65)}$	$\begin{array}{c} 13 \cdot 3 (0 \cdot 11) \\ 12 \cdot 0 (0 \cdot 15) \\ 10 \cdot 5 (0 \cdot 13) \end{array}$

TABLE 2. Absorption bands in tris-bipyridyl ruthenium complexes; $\nu/10^3$ cm⁻¹ ($\epsilon \times 10^{-4}$).

^a Probably includes $M \rightarrow L(bipy^{-})$ near 30,000 cm⁻¹, consistent with greater breadth *cf.* Na(bipy)¹² and [Al(bipy)₃].¹²^c ^b The shoulder near 24,000 cm⁻¹ is also present in Na(bipy).¹²

 \dagger The absorption curve for electrogenerated [Ru]¹⁺ described elsewhere⁵ can be simulated by incomplete reduction or by controlled partial reversion to [Ru]²⁺; isosbestic points coincide exactly with those reported.

Added in proof: Independent e.s.r. studies for $[Ru]^{*}$ (z < 2) now support a localised model (K. W. Hanck, A. G. Motten, and K. DeArmond, to be published). We thank Professor Hanck for his personal communication.

clear. Very recently, Elliot has reported near-i.r. (only) spectro-electrochemical data for the more stable series of substituted complexes $[\operatorname{Ru} \{4, 4' - (\operatorname{CO}_2 \operatorname{Et})_2 \operatorname{bipy} \}_3]^z$ (z =2+, 1+, 0, 1-) which show progressive growth of analogous intense bands near 7,000 cm⁻¹.¹⁵ An unusual interligand charge-transfer was suggested but these bands should now be reassigned as localised $\pi \rightarrow \pi^*$ transitions of the radical bipyridyl anion, as in the parent compounds.

- ¹ T. Saji and S. Aoyagui, J. Electroanal. Chem., 1975, 58, 401.
 ² N. E. Tokel-Takvoryan, R. E. Hemingway, and A. J. Bard, J. Am. Chem. Soc., 1973, 95, 6582.
 ³ V. Balzani, F. Bolletta, M. T. Gandolfi, and M. Maestri, Top. Curr. Chem., 1978, 75, 1.
 ⁴ C. Creuz and N. Sutin, J. Am. Chem. Soc., 1976, 98, 6384.
 ⁵ C. P. Anderson, D. J. Salmon, T. J. Meyer, and R. C. Young, J. Am. Chem. Soc., 1977, 99, 1980.
 ⁶ M. Maestri and M. Gratzel, Ber. Bunsenges. Phys. Chem., 1977, 81, 504.
 ⁷ D. Meisel M. S. Matheson, W. A. Mula and L. Babagi. Phys. Chem., 1977, 81, 1449.

- ⁶ M. Maestri and M. Gratzel, Ber. Bunsenges. Phys. Chem., 1977, 81, 504.
 ⁷ D. Meisel, M. S. Matheson, W. A. Mulac, and J. Rabani, J. Phys. Chem., 1977, 81, 1449.
 ⁸ Q. G. Mulazzani, S. Emmi, P. G. Fuochi, M. Z. Hoffman, and M. Venturi, J. Am. Chem. Soc., 1978, 100, 981.
 ⁹ H. D. Abruna, A. X. Teng, G. J. Samuels, and T. J. Meyer, J. Am. Chem. Soc., 1979, 101, 6745.
 ¹⁰ R. W. Murray, W. R. Heineman, and G. W. O'Dom, Anal. Chem., 1967, 39, 1666.
 ¹¹ Y. Kaizu, I. Fujita, and H. Kobayashi, Z. Phys. Chem. (Frankfurt), 1972, 79, 298.
 ¹² (a) C. Mahon and W. L. Reynolds, Inorg. Chem., 1967, 6, 1297; (b) E. König and S. Kremer, Chem. Phys. Lett., 1970, 5, 87;
 (c) Y. Torii, S. Murasato, and Y. Kaizu, Nippon Kagaku Zasshi, 1970, 91, S49; Chem. Abs., 1970, 73, 93426.
 ¹³ Reference 3, p. 35; G. A. Crosby and W. H. Elfrin, J. Phys. Chem., 1976, 80, 2206.
 ¹⁴ J. L. Kahl, K. W. Hanck, and K. DeArmond, J. Phys. Chem., 1978, 82, 540.

 - ¹⁵ C. M. Elliot, J. Chem. Soc., Chem. Commun., 1980, 261.

We thank the S.R.C. for provision of electrochemical equipment (G. A. H.) and a postgraduate studentship (L. J. Y.).

(Received, 29th December 1980; Com. 1372.)