Anodic Oxidation of Vinyl Sulphides. A Convenient Synthesis of α-Thiolated Aldehydes

By AKITERU MATSUMOTO, KOHJI SUDA, and CHINO YIJIMA*

(Department of Chemistry, Meiji College of Pharmacy, Nozawa-1-35, Setagaya-ku, Tokyo, Japan)

Summary Anodic oxidation of vinyl sulphides in aqueous acetonitrile gives α -thiolated aldehydes in good yields.

 α -THIOLATED aldehydes are valuable building blocks in organic synthesis, and many synthetic methods for these compounds have been developed.¹ All the methods, however, involve several steps or else require the use of reactive sulphenylating reagents under delicate conditions. We now report a new convenient electrochemical synthesis of α -thiolated aldehydes (2)[†] from vinyl sulphides (1).[‡]

On single-sweep cyclic voltammetry in acetonitrile containing 2% water and 0.2 M sodium perchlorate at 25 °C, the first anodic peak of the compounds (1) was irreversible. Peak potentials were as follows (platinum disc electrode, sweep rate 100 mV s⁻¹): (1a), 1.15; (1b), 1.10; (1c), 1.22; (1d), 1.12; (1e), 1.15; and (1f), 1.27 V vs. S.C.E. (standard

calomel electrode). Controlled-potential electrolysis of the compounds (1) was carried out in the same solventelectrolyte system as used in the cyclic voltammetry experiments at 1.20 or 1.30 V vs. S.C.E. at a platinum plate electrode in a divided cell. A coulometric *n*-value of *ca*. 2 F mol⁻¹ was obtained in every case (Table).

 TABLE.
 Results of controlled-potential electrolysis of the vinyl sulphides (1).

Substrate ^a conc./mм	Applied potential ^b	Coulometric n-value/F mol ⁻¹	Products and yields/%°
(1a)(12.0)	1.20	2.00	(2a)(62)
$(1b)(14 \cdot 6)$	1.20	1.95	(2b)(93)
(1c) (18·7)	1.20	2.00	(2b)(93)
(1d) (18·9)	1.20	2.00	(2d) (88)
(1e) (20·0)	1.20	2.00	(2e)(50)
(1f) (12·4)	1.30	1.96	(2f)(89)

^a Electrolyses were performed with 25 ml of aqueous acetonitrile at 25 °C. ^b V vs. S.C.E. ^c Yields were determined by g.l.c.

The electrolysed solution was concentrated *in vacuo*§ and extracted with chloroform. α -Thiolated aldehydes (2) were obtained in good yields by appropriate treatment of the chloroform layer. This is a promising method for the synthesis of the α -thiolated aldehydes of type (2) because of the mild reaction conditions, simple manipulation, and the good yields.

(Received, 29th December 1980; Com. 1377.)

† All products were satisfactorily characterized by ¹H n.m.r., i.r., and mass spectroscopy and elemental analyses.

[‡] The compounds were prepared according to literature methods.² Compound (1a) was prepared according to the method used for (1b), m.p. 89-5 °C.

f The use of NaClO₄ has proved safe during concentration but an Et_4NBF_4 supporting electrolyte may also be used to avoid any possibility of explosion.

¹ R. M. Coates, H. D. Pigott, and J. Ollinger, *Tetrahedron Lett.*, 1974, 3955; D. Groenewegen, H. Kallenberg, and A. van der Gen, *ibid.*, 1978, 2817; H. J. Bestman and J. Angerer, *Liebigs Ann. Chem.*, 1974, 2085; D. Seebach and M. Teschner, *Chem. Ber.*, 1976, 109, 1601; B. M. Trost, *Chem. Rev.*, 1978, 78, 363.

² A. A. Oswald, K. Griesbaum, B. E. Hudson, Jr., and J. M. Bregman, J. Am. Chem. Soc., 1964, 86, 2877; E. P. Kohler and H. Potter, *ibid.*, 1935, 57, 1316; W. E. Truce and J. A. Simms, *ibid.*, 1956, 78, 2756.