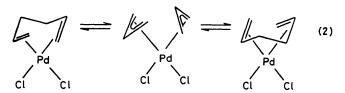
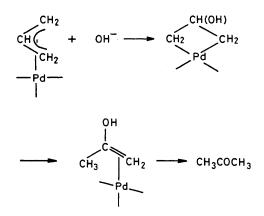

Mechanism of the Cope Rearrangement of Acyclic 1,5-Dienes and of the Wacker Oxidation of Alk-1-enes catalysed by Palladium Complexes

By ROBERT HAMILTON, THOMAS R. B. MITCHELL, and JOHN J. ROONEY* (Department of Chemistry, The Queen's University, Belfast BT9 5AG, N. Ireland)

Summary Hexa-1,5-diene is catalytically converted into acetone in an aqueous solution of $(PhCN)_2PdCl_2$, $CuCl_2$, and CuCl at 60 °C in the presence of oxygen, thereby revealing a hitherto unsuspected role of η^3 -allylic intermediates in both the Pd^{II}-catalysed Cope rearrange-


ments of 1,5-dienes and the selective Wacker oxidation of propene and higher alk-1-enes to ketones.

RECENTLY it has been reported¹ that (PhCN)₂PdCl₂ under very mild conditions catalyses the Cope rearrangement of several acyclic 1,5-dienes. A mechanism involving formation and cleavage of a cyclohexyl carbonium ion complexed to Pd^{II} was suggested¹ (equation 1). However, when we


had read this paper¹ we realized that some of our results arising out of studies of the reaction products obtained from oxidative addition of a variety of xanthates to certain noble metal compounds² supported a quite different mechanism. Specifically, we had found that when hex-1en-5-yl-S-methylxanthate was added at 90 °C to Pd(PPh₃)₄, which had previously partially oxidized to Pd(O₂)(PPh₃)₂, with no precaution taken to exclude air, substantial quantities of acetone were obtained in addition to hexa-1,5-diene and other products. When pure Pd(PPh₃)₄ was used under dry anaerobic conditions acetone was not produced. Acetone was also formed, but in much smaller amounts, when partially oxidized Pt(PPh₃)₄ was allowed to react with this xanthate. These results indicated that a hexa-1,5diene Pd complex is formed from the xanthate followed by scission of the diene ligand to give a $bis(\eta^3-allyl)Pd$ compound. The η^{3} -allyl ligands are then oxidized and the product eventually released is acetone.

In order to test this hypothesis we made up a Wacker catalyst³ consisting of (PhCN)₂PdCl₂, CuCl₂, and CuCl in aqueous solution at 60 °C and fed in hexa-1,5-diene vapour in a stream of excess of oxygen. Substantial catalytic conversion into acetone was obtained. This result strongly supports the view that a $\mathrm{bis}(\eta^3\text{-allyl})\mathrm{Pd}^{\text{II}}$ complex is the key intermediate in the catalysed¹ Cope rearrangement. The current theory⁴ for the thermal Cope rearrangement is that it proceeds via a sigmatropic [3,3] shift starting from the diene in the chair conformation. In the Pd^{II} complexes the bidentate diene ligand also seems to be held in the same conformation and to develop into the $bis(\eta^3-allyl)$ complex with the orientation shown in equation (2). This explains

why the catalytic Cope rearrangement of 2,5-disubstituted dienes does not occur,¹ since steric hindrance would then prevent formation of the $bis(\eta^3-allyl)$ complex in the orientation required. Quite clearly the mechanisms of the thermal and catalysed rearrangements are extremely similar, the interaction of the developing π -orbitals of the

allylic ligands with appropriate Pd orbitals being the key to the much lower energy pathway in the latter. Although bis(η^3 -allyl)PdCl, has never been isolated, the formation of this 18-electron Pd^{IV} compound seems feasible on a molecular orbital basis. The two Cl⁻ ligands and the centres of the two η^3 -allyl ligands can be regarded as lying in the xy plane in a square planar arrangement. The non-bonding π -orbitals of the allyl ligands then have appropriate symmetry to engage the d_{xz} and d_{yz} orbitals, respectively, of the metal ion.

SCHEME. Other ligands have been omitted for the sake of clarity.

The conversion of the η^3 -allyl ligands into acetone under oxidizing conditions is of considerable interest, and apparently occurs via nucleophilic attack by hydroxide ion at the C-2 position to give the corresponding hydroxymetallacyclobutane derivative (Scheme). The hydride and proton shift reactions involved in converting the -CH2CH(OH)-CH₂-ligand into acetone are obvious. The first reaction in the Scheme has precedent in the observation⁵ that an analogous reaction in which H⁻ or Me⁻ adds to an η^3 -allyl Mo compound to give the corresponding metallacyclobutane complex readily takes place.

When the Wacker oxidation process is carried out with propene or higher alk-1-enes the corresponding ketones rather than aldehydes, as in the case of ethylene, are obtained.³ The present results and mechanism suggest that the selective conversion into ketones is also due to formation of η^3 -allyl intermediates and their reaction with hydroxide ions as in the Scheme. This theory for the Wacker process contrasts with the currently accepted mechanism of addition of hydroxide ion to π -bonded olefin,³ a reaction which apparently occurs when the olefin in question is ethylene. Furthermore the selective conversion of propene into acetone in oxygen and steam on a heterogeneous $MoO_x-SnO_y-Al_2O_3$ catalyst⁶ may be another example of this novel aspect of the chemistry of η^3 -allyl intermediates.

(Received, 26th January 1981; Com. 094.)

- ¹ L. E. Overman and F. M. Knoll, J. Am. Chem. Soc., 1980, **102**, 865. ² R. Hamilton, T. R. B. Mitchell, J. J. Rooney, and M. A. McKervey, J. Chem. Soc., Chem. Commun., 1979, 731. ³ P. M. Henry, Adv. Organomet. Chem., 1975, **13**, 363.

- ⁴ J. J. Gajewski, Acc. Chem. Res., 1980, 13, 142.
 ⁵ M. Ephritikhine, M. L. H. Green, and R. E. MacKenzie, J. Chem. Soc., Chem. Commun., 1976, 6119.
- ⁶ J. Buiten, J. Catal., 1968, 10, 188.