Radical-like Reactivity of Rhodium(11) Octaethylporphyrin Dimer with Trimethylphosphite

By BRADFORD B. WAYLAND* and BRUCE A. WOODS

(Department of Chemistry and the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pa. 19104)

Summary Rhodium(II) octaethylporphyrin dimer, (Rh-OEP)₂, reacts with P(OMe)₃ to produce RhOEP[P(O)-(OMe)₂] and products associated with the methyl radical, indicative of an unusual donor-induced metallo-radical process.

CURRENT interest in radical-like reactivity of metallospecies prompts us to report an example of a donor molecule induced homolytic cleavage of the metal-metal bonded complex rhodium octaethylporphyrin (OEP) dimer, $(Rh^{11}OEP)_2$ (1), and subsequent radical reactions.

Our interest has recently been focused on the scope and potential applications of the radical-like reactivity patterns associated with planar low-spin d⁷ complexes of cobalt(II) and rhodium(II).¹ While Co^{II} porphyrins are invariably monomeric (S=1/2) species, the only reported Rh^{II} porphyrin is an Rh-Rh bonded dimer, (RhOEP)₂.² The relatively rigid square planar array of porphyrin donor sites prohibits large structural rearrangements and thus directs donor molecule interactions to the positions *trans* to the Rh-Rh bond. The binding of donors by (RhOEP)₂ results in a weakening of the Rh-Rh bond and enhances the opportunity to form the monomeric Rh^{II} species (Rh^{II}OEP). Monomeric Rh^{II}OEP species are highly reactive and have not yet been directly detected; however, the observed reaction products are indicative of the radical-like nature of these species.

Trimethylphosphite was selected for study because of the effective donor properties and known reactions of radicals with phosphites.³ When radicals react with trialkylphosphites, the dominant products result from elimination of a methyl radical, illustrated by equation (1). Trimethylphosphite could thus function as both a ligand for

$$X \cdot + : P(OMe)_{3} \rightarrow [X - \dot{P}(OMe)_{3}] \rightarrow X - P(OMe)_{2} + Me \cdot$$
(1)

generating an $Rh^{II}OEP$ species and as a probe for the radical nature of this species.

Rhodium octaethylporphyrin reacts with trimethylphosphite in benzene solvent to produce RhOEP[P(O)- $(OMe)_2$], (2), and products associated with a methyl radical, † equation (2). When an excess of P(OMe)₃ is present,

$$(\text{RhOEP})_2 + 2\text{P(OMe)}_3 \rightarrow 2\text{RhOEP}[\text{P(O)(OMe)}_2] + 2\text{Me} \cdot (2) \quad (2)$$

Me-P(O)(OMe)₂ forms in more than stoicheiometric quantities, suggesting a radical chain process involving equation (1) where X is Me. When the molar ratio of P(OMe)₃ to (RhOEP)₂ is 1 to 1 or less, (RhOEP)₂ efficiently traps the methyl radical to form RhOEP(Me).[†] The overall reaction for this case is given by equation (3). RhOEP-[P(O)(OMe)₂] is the expected product of equation (1)

$$(\text{RhOEP})_2 + P(\text{OMe})_3 \rightarrow \text{RhOEP}[P(\text{O})(\text{OMe})_2] + \text{RhOEP}(\text{Me}) \quad (3)$$

where X. is Rh^{II}OEP and this species reacts as a radical.

Although direct observation of some of the proposed intermediates is lacking, we believe that the reaction proceeds by the series of steps shown in the Scheme.

Formation of metallo-phosphonates from phosphites has several precedents which are generally considered to proceed by nucleophilic displacement at the ester carbon centre.⁴ Our observed radical pathway may have relevance to the thermolysis reactions of metallocarbonyl

 $^{^{\}dagger}$ MeP(O)(OMe)₂, RhOEP(Me), and RhOEP[P(O)(OMe)₂] have been characterized by n.m.r. and mass spectral studies. Formation of OEPRhP(O)(OMe)₂ can be conveniently followed by the appearance in the ¹H n.m.r. of a characteristic high-field methyl doublet [δ 0.586; J(³¹P-¹H) 12·3 Hz] integrating as six protons per rhodium porphyrin unit. RhOEPMe is detected by observing the high-field methyl resonance (δ - 6·342) with characteristic ¹⁰³Rh coupling [J(¹⁰³Rh-¹H) 2·75 Hz].

 $(\mathrm{Rh^{II}OEP})_2 + \mathrm{P(OMe)}_3 \rightarrow \{\mathrm{Rh^{II}OEP}[:\mathrm{P(OMe)}_3]\}_2 \rightleftharpoons$ {Rh^{II}OEP[:P(OMe)₃]} $\{Rh^{IIOEP}[P(OMe)_3]\} \rightarrow \{Rh^{IIIOEP}[:P(OMe)_3]\} \rightarrow$ $Rh^{III}OEP[P(O)(OMe)_2] + Me$ $Me \cdot + P(OMe)_3 \rightarrow \{MeP(OMe)_3\} \rightarrow MeP(O)(OMe)_2 + Me \cdot$ $Me_{\bullet} + \frac{1}{2}(Rh^{II}OEP)_2 \rightarrow RhOEP(Me)$

SCHEME

phosphite complexes which produce metallo-phosphonates.⁵ Although the reaction of the co-ordinated phosphite is unusual, the real significance of this study rests in the proposed donor molecule induced homolytic cleavage of a metal-metal bond resulting in a highly reactive radical-like (Rh^{II}) intermediate {Rh^{II}OEP[P(OMe)_a]}. Trimethylphosphite co-ordination generates and then traps the Rh^{II} centre by a reaction that results in the irreversible elimination of a methyl radical. The observed reactivity of (1) with P(OMe)₃ suggests the possibility of a wide variety of donor-induced radical reactions of (RhOEP)2.

This work was supported by P.R.F. and N.S.F. M.R.L. grants.

(Received, 18th December 1980; Com. 1351.)

¹ B. B. Wayland and A. R. Newman, J. Am. Chem. Soc., 1979, 101, 6472; Inorg. Chem., 1980, 18, in the press.

 ² H. Ogoshi, J. Setsune, and Z. Yoshida, J. Am. Chem. Soc., 1977, 99, 3869.
 ³ J. K. Kochi and P. J. Krusic, J. Am. Chem. Soc., 1969, 91, 3944; A. G. Davies, D. Griller, and B. P. Roberts, Angew. Chem., Int. Ed. Engl., 1971, 10, 738.

⁴ R. J. Haines, I. L. Marais, and C. R. Nolte, Chem. Commun., 1970, 547; W. C. Trogler, L. A. Epps, and L. G. Marzilli, Inorg. Chem., 1975, 14, 2748.

⁵ M. Bruce, J. Howard, I. W. Nowell, G. Shaw, and P. Woodward, J. Chem. Soc., Chem. Commun., 1972, 1041; R. Shakir, J. L. Atwood, T. S. Janik, and J. D. Atwood, J. Organomet. Chem., 1980, 190, C14.