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Summary The mono-oxygenase system from Methyl-
ococcus capsulatus oxidises cyclopropane to cyclo-
propanol, methylcyclopropane to cyclopropylmethanol,
and monosubstituted benzenes to para-substituted
phenols (with accompanying NIH shift).

THE methane mono-oxygenases from Methylococcus cap-
sulatus (Bath) and other sources have been reported to
catalyse oxidations of a variety of substrates including
alkanes, alkenes, and arenes.l;> To probe the mechanism
and active site of the enzyme from M. capsulatus we have
studied its behaviour towards cyclopropane, methylcyclo-
propane, and certain aromatic substrates (cf. Table).

Air and cyclopropane were incubated with a crude
enzyme preparation! from M. capsulatus in phosphate
buffer containing NADH. A single product of oxidation
was identified as cyclopropanol by comparison (g.l.c.) with
authentic cyclopropanol® (propanal and allyl alcohol were
not found) and by its acid-catalysed conversion into
propanal.# Thus, an aliquot of the reaction mixture did
not produce a 2,4-dinitrophenylhydrazone when allowed
to react with 0-49, (w/v) 2,4-dinitrophenylhydrazine in
hydrochloric acid for 45 min/20 °C. However, after heating
this mixture for 45 min at 60 °C, propanal 2,4-dinitro-
phenylhydrazone was obtained [identified by comparison
(t.l.c.) with an authentic sample]. Ooyama and Foster?
claimed that propanal is a product of oxidation of cyclo-
propane by Mycobacterium vaccae (strain JOB5) and
dioxygen. However, they identified propanal after atmos-

pheric distillation of the reaction mixture followed by
addition of acidic 2,4-dinitrophenylhydrazine. It is likely
that cyclopropanol was converted into propanal under
these conditions.*

In a manner similar to that described for cyclopropane,
methylcyclopropane gave cyclopropylmethanol which was
identified by g.l.c. and by conversion into its a-naphthyl-
urethane which was identified (comparison with an authen-
tic sample) by t.l.c., 'H n.m.r. spectroscopy, and electron
impact (e.i.) mass spectrometry. According to the g.l.c.
analyses, but-3-en-1-0l was %ot a product of the oxidation
of methylcyclopropane by M. capsulatus.

Products from the oxidation of various aromatic sub-
strates by the enzyme from M. capsulatus are shown in the
Table. Note that the oxidation is regioselective for the
para-position of the monosubstituted benzenes. Quanti-
tative analysis by g.l.c. for the oxidation of both toluene
and ethylbenzene showed < 3%, meta and < 5% ortho
isomers. The oxidation is susceptible to the size of the
substituent. t-Butyl- and 1-methylcyclopropyl-benzene
are not oxidised, indicating a certain spatial restriction at
the active site. Whereas styrene gives similar amounts
of styrene oxide and p-hydroxystyrene, a-methylstyrene
gives p-hydroxy-a-methylstyrene almost exclusively.
Naphthalene gives both - and S-naphthol. The oxidation
of ethylbenzene exhibits an ‘NIH’ shift.® p-Deuterio-
ethylbenzene was prepared by quenching the Grignard
reagent from p-bromoethylbenzene with deuterium oxide.
Incubation of this substrate with the M. capsulatus enzyme
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TABLE.2
Substrate Product(s)b.e
Toluene Benzyl alcohol(4), p-cresol(1)
Ethylbenzene 1-Phenylethanol(1), p-ethylphenol(1)
Styrene Styrene oxide(1), p-hydroxystyrene(l)
a-Methylstyrene p-Hydroxy-a-methylstyrene
Propylbenzene p-Hydroxypropylbenzene

not oxidised
not oxidised

«-(1:6) and B-Naphthol(1)

a Oxidations were done with e.g. 10 ul of liquid substrate, a
crude enzyme preparation (0-2 cm3 containing ca. 4 mg of protein),
NADH (0-05 cm?® of a 0-1 M solution in phosphate buffer) and 0-4
cm3 of 'a 20 mm phosphate buffer (pH 7-0) at 45 °C for 15 min—
1h. For larger scale reactions quantities of components were
proportionally increased. The reaction mixture was contained in
a stoppered (Subaseal) flask and agitated in a reciprocating water-
bath. P Relative amounts of products are given; conversions of
substrate into products are up to ca. 29%. ¢ Products were iden-
tified by t.l.c. and/or g.l.c. and by 'H n.m.r. spectroscopy after
chromatographic separation.

t-Butylbenzene

1-Methylcyclopropyl-
benzene

Naphthalene

gave p-ethylphenol, isolated by solvent extraction and
purified by preparative layer chromatography. The
61-4 MHz 2H n.m.r. spectrum of this product shows a single
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resonance corresponding in chemical shift to 2-H (8 6-6 in
CCl,) of p-ethylphenol (n.b. 3-H at § 6:9). The 'H n.m.r.
spectrum and the e.i. mass spectrum of its methyl ether
indicate a deuterium retention of ca. 609,.

The results presented suggest that the M. capsulatus
system operates via a mechanism in which dioxygen is
converted into a presumably metal-bound oxygen species
that is capable of insertion into a C-H bond and addition
to a C=C bond.? The regioselective formation of p-
substituted phenols from monosubstituted benzenes (cf.
Table) and the accompanying NIH shift require the
intermediacy of either an arene 3,4-oxide or p-substituted
cationic g-complex. Both electronic and steric factors
could favour these intermediates over their corresponding
isomers. The non-formation of allyl alcohol from cyclo-
propane and but-3-en-1-ol from methylcyclopropane argues
against a reaction pathway featuring an intermediate that
is either a charged species (e.g. cyclopropyl carbocation)
or a radical (i.e. cyclopropylmethyl radical).®
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