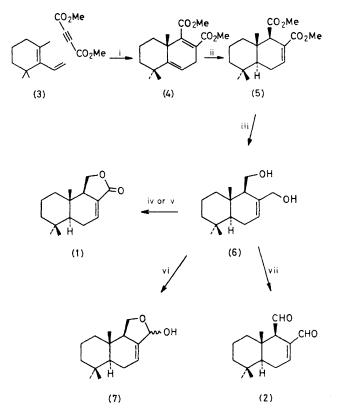
Synthesis of Cinnamolide and Polygodial


By S. CHRISTOPHER HOWELL, STEVEN V. LEY,* and MICHAEL MAHON (Department of Chemistry, Imperial College, London SW7 2AY)

and PAUL A. WORTHINGTON

(I.C.I. Plant Protection, Jealott's Hill, Bracknell, Berks., RG12 6EY)

PREVIOUS synthetic routes to cinnamolide $(1)^1$ and the potent insect antifeedant polygodial $(2)^{1b,2}$ are unattractive, especially if reasonable quantities of material are required. Here we report a short, highly efficient synthesis

Summary Starting from 2,6,6-trimethyl-1-vinylcyclohexl-ene a short synthesis of the sesquiterpenes cinnamolide and polygodial has been achieved with 60% and 57%overall yields, respectively.

SCHEME. i, 110 °C, 24 h; ii, 1 atm of H₂, Pd/C 10%, trace of HCl, dil. methanol; iii, LiAlH₄; iv, 10—20 equiv. of BaMnO₄, CH₂Cl₂, 24 h; v, Ag₂CO₃/Celite; vi, 1—2 equiv. of BaMnO₄, CH₂Cl₂, 4 h; vii, dimethyl sulphoxide/(COCl)₂ 4 equiv., -50 °C, 1 h, and then 6 equiv. of NEt₃.

of these natural products starting from the readily available diene (3).[†] Our route employs a similar strategy to that of Nakanishi;^{1b} however, by a careful choice of reagents we can avoid the use of protecting groups.

Diels-Alder reaction of (3) with dimethyl acetylenedicarboxylate readily affords (4) in 83% yield (Scheme). Hydrogenation of (4) under isomerising conditions³ (1 atm of H₂, Pd/C, trace of HCl, methanol) led directly to the *trans*-fused decalin^{\pm 1b} (5) in high yield (80%). Reduction of (5) with lithium aluminium hydride gave the key drimane diol (6) (90%), m.p. 73—74 °C (lit.^{1b} 73—74 °C). Oxidation of this diol with an excess of barium manganate⁴ gave cinnamolide (1) in 94% yield, or quantitatively using Fetizon's reagent.⁵ Compound (1) was identical in all respects to the previously prepared material.^{1b} Oxidation of (6) using only 1—2 equiv. of barium manganate gave the known lactol (7) (92%) (m.p. 95—98 °C, lit.^{1c} 95— 97 °C).

In order to achieve specific oxidation of (6) to polygodial (2) as opposed to (1) or (7), special reaction conditions were required. Thus, it was found that the Swern method⁶ (dimethyl sulphoxide/oxalyl chloride) uniquely effected this transformation in 95% yield. The polygodial produced was identical to authentic material {¹H n.m.r. δ 0.93 (s, 6H), 0.95 (s, 3H), 1.1—2.0 (m, 7H), 2.4 (m, 2H), 2.8 (m, 1H), 7.1 (m, 1H), 9.45 (s, 1H), and 9.5 (d, 1H); m.p. 91.0—92.5 °C; lit.^{1b} 93—94 °C}.

We thank the S.R.C. and I.C.I. Plant Protection, Jealott's Hill, for research studentships (M. M. and S. C. H., C.A.S.E. award).

(Received, 24th February 1981; Com. 210.)

† Prepared in 95% yield from β -cyclocitral by treatment with trimethylsilylmethyl magnesium chloride in ether at room temperature followed by toluene-p-sulphonic acid in tetrahydrofuran at room temperature or in 90% yield according to ref. 1b.

 \ddagger This structure has been confirmed by X-ray crystallographic determination. We thank Dr. D. J. Williams, Imperial College, for this result.

¹ (a) T. Suzuki, M. Tanemura, T. Kato, and Y. Kitahara, Bull. Chem. Soc. Jpn., 1970, 43, 1268; (b) S. P. Tanis and K. Nakanishi, J. Am. Chem. Soc., 1979, 101, 4398; (c) H. Yanagawa, T. Kato, and Y. Kitahara, Synthesis, 1970, 257.

² T. Kato, T. Suzuki, M. Tanemura, A. S. Kumanireng, N. Ototani, and Y. Kitahara, Tetrahedron Lett., 1971, 1961.

- ³ P. N. Rylander, Aldrichimica Acta, 1979, 12, 53.
- ⁴ H. Firouzabadi and E. Ghaderi, Tetrahedron Lett., 1978, 839.
- ⁵ M. Fetizon and M. Golfier, C. R. Acad. Sci., Ser. C, 1968, 267, 900.
- ⁶ K. Omura and D. Swern, *Tetrahedron*, 1978, **34**, 1651.