A Novel Stereoselective Route to *cis*-Olefins *via* Addition of Vinyl Cuprates to $\alpha\beta$ -Unsaturated Sulphones and Subsequent Desulphonylation

By GIOACCHINO DE CHIRICO, VITO FIANDANESE, GIUSEPPE MARCHESE, FRANCESCO NASO,* and ORONZO SCIACOVELLI (Istituti Chimici Università di Bari, via Amendola 173, Bari, Italy)

Summary Dialkenyl cuprates, generated by addition of dialkyl cuprates to acetylene, react with $\alpha\beta$ -unsaturated sulphones to give cis- $\gamma\delta$ -unsaturated sulphones which can be easily desulphonylated with retention of the double-bond configuration. metallic species which can be generated by addition of cuprates or similar reagents to acetylenes.³ We now report that during our work on the reactions of sulphur compounds with copper(I) reagents,⁴ we have found that *cis*-dialkenylcuprates generated by Normant's method^{3d} can be added to $\alpha\beta$ -unsaturated sulphones to give products in which the *cis*-geometry of the cuprate alkenyl substituents is maintained. Furthermore, the resulting $\gamma\delta$ -unsaturated sulphones can be easily desulphonylated⁵ with retention of configuration (Scheme).

STEREOSELECTIVE synthesis of olefins represents a classical challenge to organic chemists.¹ In recent years the use of copper(I) reagents has provided routes to such compounds.² There is particular interest in the unsaturated organo-

TABLE. Yields of $\gamma\delta$ -unsaturated sulphones (1)-(6) and olefins (7)-(12).^a

R1	R²	R³	γδ-Unsaturated sulphone ^b	Yield ¢/%	Olefin ^{b,d}	Yield º/%
Bu ⁿ	Me	н	(1) ^{f,g,h}	80	(7)	98
Bu ^s	Me	н	(2)f,i,j	85	(8)	95
Bun	Me	Me	(3)j,k,1	85	(9)	83
Bun	\mathbf{Ph}	н	(4)j,k,m,n	85	(10)	83
Bu ^s	\mathbf{Ph}	н	(5)f,i,j	80	(11)	87
But	н	н	(6) ^f , h, 1	87	(12)	82

^a The starting dialkylcuprates (R_2^1 CuLi), unless otherwise indicated, were prepared from Me₂S·CuBr complex and a salt-free solution of R¹Li (cf. ref. 6). The concentrations of reagents ranged between 2.5 and 4.5×10^{-2} M. ^b All new compounds reported herein weight determinations (mass spectrometry). ^o Isolated yields. ^d Desulphonylation was performed at 25 °C. ^e Yields determined by g.l.c. ^tAt -40 °C. ^g Reaction time 0.5 h. ^h Et₂O-Me₂S (60:40) as solvent. Stereoselectivity was lower (97-98%) if Et₂O was the only solvent. ^t Reaction time 1.5 h. ^j Et₂O as solvent. ^k At -5 °C. ¹ Reaction time 1.6 h. ^m Starting cuprate (R₂¹CuLi) prepared from CuI and R¹Li.

Starting with di-n-butyl-, di-s-butyl- or di-t-butylcuprates and acetylene, the resulting dialkenylcuprates were allowed to react with various sulphones to generate compounds (1)-(6). These were isolated and subjected to reductive desulphonylation⁵ to give the final olefins (7)-(12). The overall yields of this novel olefin synthesis were in the range 70-80% (Table).

The configurations of the $\gamma\delta$ -unsaturated sulphones and of the final olefins were established by ¹H n.m.r. spectroscopy[†] and no trans-isomer was detected. Furthermore, in the case of compounds (7), (10), and (12) the availability of the transisomers allowed us to perform a careful g.l.c. analysis of the isomeric purity. As a result, it was found that the degree of stereoselectivity was higher than 99%. Therefore, it appears that the novel procedure described here represents a valid synthetic tool.

We thank the C.N.R., Rome, for financial support.

(Received, 5th February 1981; Com. 136.)

[†] The spectra were analysed with the aid of a modified⁷ LAOCOON 3 program.

¹ For reviews of olefin synthesis see: J. Reucroft and P. G. Sammes, Quart. Rev. Chem. Soc., 1971, 25, 135; D. J. Faulkner, Synthesis, 1971, 175; A. S. Arora and I. K. Ugi in 'Methoden dr Organischen Chemie (Houben-Weyl),' Vol. V/1b, 4th edn., ed. E. Muller, G. Thieme Verlag, Stuttgart, 1972, pp. 728—945.
^a For reviews see: J. F. Normant, 'Organocopper Reagents in Organic Synthesis,' in 'New Applications of Organometallic Reagents in Organic Synthesis,' ed. D. Seyferth, Elsevier, Amsterdam, 1976, p. 219; G. H. Posner, Org. React., 1972, 19, 1; 1975, 22, 253; F. Naso, Chim. 4, Chim. 1976, 1972, 1975, 22, 253; F. Naso, Chim. 1976, 1972, 1975, 22, 254; F. Naso, Chim. 1976, 1972, 1975, 22, 254; F. Naso, Chim. 1976, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1975, 22, 254; F. Naso, Chim. 1976, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1975, 22, 254; F. Naso, Chim. 1976, 1972, 1975, 22, 255; F. Naso, Chim. 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 1972, 1975, 22, 255; F. Naso, Chim. 1976, 210; F. Naso, Chim. 1976, 210; F. Naso, Chim. 1976, 22, 255; F. Naso, Chim. 1976, 210; F. Naso, Chim. 1976, 210; F. Naso, Chim. 1976, 210; F. Naso, F. Chim. 1976, 210; F. Naso, F. Chim. 1976, 210; F. Naso, F. Chim. 1976, 210; F. Chim. 1976, 210; F. F. Naso, F. Chim. 1976, 210; F. F

Chim. Ind. (Milan), 1979, 61, 473.

³ (a) A. Commerçon, J. F. Normant, and J. Villieras, Tetrahedron, 1980, 36, 1215; (b) A. Alexakis, G. Cahiez, and J. F. Normant, ibid., p. 1961; (c) Synthesis, 1979, 826; (d) J. Organomet. Chem., 1979, 177, 293; (e) H. Westmijze, H. Kleijn, and P. Vermeer, Tetrahedron Lett., 1977, 2023; (f) A. Marfat, P. R. McGuirk, and P. Helquist, J. Org. Chem., 1979, 44, 1345, 3888. ⁴C. V. Maffeo, G. Marchese, F. Naso, and L. Ronzini, J. Chem. Soc., Perkin Trans. 1, 1979, 92; V. Fiandanese, G. Marchese, and F. Naso, J. Organomet. Chem., 1978, 160, C13; Tetrahedron Lett., 1978, 5131; P. Barsanti, V. Calò, L. Lopez, G. Marchese, F. Naso, and

G. Pesce, J. Chem. Soc., Chem. Commun., 1978, 1085.
 ⁵ M. Julia and D. Uguen, Bull. Soc. Chim. Fr., 1976, 513.
 ⁶ H. O. House, C. Y. Chu, J. M. Wilkins, and M. J. Umen, J. Org. Chem., 1975, 40, 1460.
 ⁷ S. Castellano and A. Bothner-By, J. Chem. Phys., 1964, 41, 3863; M. Attimonelli and O. Sciacovelli, Org. Magn. Reson., 1980, 13, 077

277.