Electron Spin Resonance Investigation of the Thermolysis, Photolysis, and Oxygenation of Bi- and Tri-metallic Organochromium Complexes

By LAURENCE CARLTON, W. EDWARD LINDSELL, and PETER N. PRESTON (Department of Chemistry, Heriot-Watt University, Riccarton, Currie, Edinburgh EH14 4AS)

Summary Oxygenation of the products derived thermally (-70 °C) from $[\operatorname{Cr}_2(\eta^5-\operatorname{C}_5H_5)_2(\operatorname{CO})_6]$ or photochemically from $[\{(\eta^{5-}\operatorname{C}_5H_5)\operatorname{Cr}(\operatorname{CO})_3\operatorname{Cu}(\operatorname{phen})\}_n];$ (phen = 1,10-phenanthroline) and $[\operatorname{Hg}\{\operatorname{Cr}(\eta^{5-}\operatorname{C}_5H_5)(\operatorname{CO})_3\}_2]$ gives rise to an e.s.r. signal assigned to $[\operatorname{Cr}(\eta^{5-}\operatorname{C}_5H_5)(\operatorname{CO})_n(\operatorname{O}_2)]$ (n = 2 or 3); evidence in support of this structure is adduced from experiments using the deuterium labelled complex $[\operatorname{Hg}\{\operatorname{Cr}(\eta^{5-}\operatorname{C}_5\mathrm{D}_5)(\operatorname{CO})_3\}_2]$ and by the use of ${}^{17}\operatorname{O}_2$ -enriched dioxygen.

We have concluded from e.s.r. spectral evidence that the photolysis and oxygenation of $[Mn_2(CO)_{10}]$ gives rise to $[Mn(CO)_5(O_2)]$ and we have shown that related binuclear complexes, *e.g.* $[Fe_2(\eta^5-C_5H_5)_2(CO)_4]$, behave in similar fashion.¹ We now demonstrate that a chromium-dioxygen

$$[Cr(\eta^{5}-C_{5}H_{5})(CO)_{3}]_{n}$$
(1) $n = 2$
(6) $n = 1$

$$[\{(\eta^{5}-C_{5}H_{5})Cr(CO)_{3}Cu(phen)\}_{n}]$$
(2)
$$[Hg\{Cr(\eta^{5}-C_{5}R_{5})(CO)_{3}\}_{2}]$$
(3) $R = H$
(5) $R = D$

$$[Cr(\eta^{5}-C_{5}H_{5})(CO)_{n}(O_{2})]$$
(4)

complex is generated in a thermal reaction of $[Cr_2(\eta^5-C_5H_5)_2-(CO)_6]$ (1) in oxygenated solution and that the same complex is also generated by the photolysis and oxygenation of the bimetallic complex $[\{(\eta^5-C_5H_5)Cr(CO)_3Cu(\text{phen})\}_n]^2$ (2) (phen = 1,10-phenanthroline) and the trimetallic complex $[Hg \{Cr(\eta^5-C_5H_5)(CO)_3\}_2]^3$ (3).

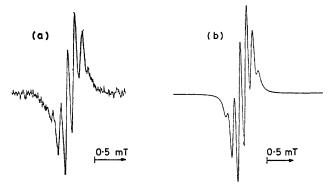


FIGURE 1. E.s.r. spectrum from (1) with O_2 in toluene at -70 °C: (a) experimental (9.38 GHz); (b) simulated using parameters given in text (line width = 0.07 mT).

Degassed solutions of (1) in toluene or dichloromethane are e.s.r.-inactive⁴ but when dioxygen (100—300 Torr) is admitted to a toluene solution in the dark at -70 °C an e.s.r. signal is observed (Figure 1) as a sextet ($g_{1so} = 1.9873 \pm 0.0005$, $a_{1so} = 0.111 \pm 0.005$ mT) with quartet satellites

 $(a_{180} = 1.72 \pm 0.02 \text{ mT})$ assignable to ⁵³Cr (I = 3/2, 9.5)natural abundance).⁵ This signal does not diminish in intensity over 1 h at -70 °C but at ≥ -40 °C decomposition occurs and other paramagnetic species ($g_{1so} > 2 \cdot 0$) are formed. Identical sextet signals are formed by u.v. photolysis of (3) in toluene at -50 °C [$g_{1so} = 1.9873$, $a_{1so}(\text{sextet}) = 0.111 \pm 0.005 \text{ mT}$, $a_{1so}(^{53}\text{Cr}) = 1.70 \pm 0.01 \text{ mT}$] or (2) in dichloromethane at -70 °C ($g_{iso} = 1.9867$). From these data it was surmised that a paramagnetic η^5 -cyclopentadienylchromium dioxygen complex such as $[Cr(\eta^5-C_5H_5)(CO)_n(O_2)]$ (4) was produced from (1-3) during the initial phase of oxidation. The value of n is uncertain but could probably be determined by the use of ¹³C-labelled precursors.

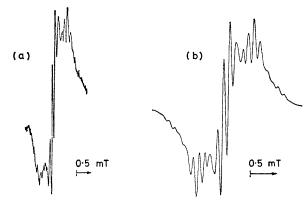


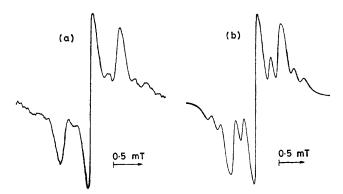
FIGURE 2. E.s.r. spectrum from (3) with $^{17}O_2$ in toluene at (a) experimental (9.38 GHz); (b) simulated using parameters given in text [line widths = 0.07 mT for $^{16}\text{O}-^{16}\text{O}$ (8.1%), 0.08 mT for $^{16}\text{O}-^{17}\text{O}$ (40.8%), and 0.09 mT for $^{17}\text{O}-^{17}\text{O}$ (51.1%)].

The presence of η^5 -cyclopentadienyl and dioxygen ligands in species (4) was confirmed by labelling procedures. Thus, u.v. irradiation of a toluene solution of $[Hg\{Cr(\eta^5-C_5D_5) (CO)_{3}_{2}$ (5) (D enrichment > 95%)⁶ at - 50 °C in the presence of dioxygen gave an e.s.r. spectrum in which the sextet (5 ¹H) hyperfine structure was absent. Also, the e.s.r. spectra observed when (3) (Figure 2) and (5) (Figure 3) were subjected to photolysis and oxygenation in ¹⁷O₂ (enrichment 71.4%) can be analysed unambiguously in terms of hyperfine structure arising from two equivalent O atoms $(a_{1so} = 0.177 \pm 0.005 \text{ mT})$. These data support the formulation (4). A frozen-solution e.s.r. spectrum in toluene $(g_1 = 1.997, g_2 = 1.986, g_3 = 1.976)$ indicates a low symmetry.

Possible structures are either (4, n = 2) with a peroxo-type $Cr-O_2$ bond with equivalent oxygens or (4, n = 2 or 3) with

¹ W. E. Lindsell and P. N. Preston, J. Chem. Soc., Dalton Trans., 1979, 1105.

² W. E. Lindsen and F. N. Fleston, J. Chem. Soc., Dation Frans., 1979, 1105.
³ P. Hackett and A. R. Manning, J. Chem. Soc. Datton Trans., 1975, 1606.
³ R. B. King and F. G. A. Stone, Inorg. Synth., 1963, 7, 104.
⁴ Cf. T. Madach and H. Vahrenkamp, Z. Naturforsch., Teil B, 1978, 33, 1301.
⁵ For comparison of g factors and ¹H hyperfine interaction in paramagnetic Cr complexes, see Ch. Elschenbroich and F. Gerson, Chem. 2007, 199 J. Organomet. Chem., 1973, 49, 445. ⁶ The deuteriated analogue of (3) was synthesised in an identical manner to (3) but with the use of C_5D_6 (cf. E. Gallinella and


P. Mirone, J. Labelled Comp. Radiopharm., 1971, 7, 183). ⁷ J. A. Howard, J. C. Tait, and S. B. Tong, Can. J. Chem., 1979, 57, 2761; J. A. Howard and J. C. Tait, J. Am. Chem. Soc., 1977,

99, 8349.

⁸ E. Melamud, B. L. Silver, and Z. Dori, J. Am. Chem. Soc., 1974, 96, 4689.

⁹ Ready loss of CO from (6) would be expected: cf. D. S. Ginley, C. R. Buck, and M. S. Wrighton, *Inorg. Chim. Acta.*, 1977, 23, 85; B. H. Byers and T. L. Brown, *J. Am. Chem. Soc.*, 1975, 97, 3260. ¹⁰ Spin-trapping experiments were conducted on (1) in dichloromethane or toluene solutions in the dark at -40 °C; cf. A. Hudson, M. F. Lappert, and B. K. Nicholson, *J. Chem. Soc.*, Dalton Trans., 1977, 551. ¹¹ Cf. side-on bonding of the nitroso-function in $[Mo(\eta^5-C_5H_3)(ONCMe_2)(CO)_2]$: G. P. Khare and R. J. Doedens, *Inorg. Chem.*, 1977, 16 007.

16, 907.

E.s.r. spectrum from (5) with ${}^{17}O_2$: (a) experimental FIGURE 3. (9.38 GHz) (conditions as for Figure 2); (b) simulated using parameters given in text (line widths = 0.11, 0.13, and 0.15 mT for ${}^{16}\text{O}{-}{}^{16}\text{O}{-}^{16}\text{O}{-}^{16}\text{O}{-}^{16}\text{O}{-}^{17}\text{O}{-}^{1$

a superoxo-type Cr-O₂ bond but involving a dynamic equilibrium in which oxygen atoms are interchanged. However the e.s.r. data [g tensors, $a_{iso}({}^{53}Cr)$] are consistent with a Cr species having essentially a metal-centred unpaired electron and low unpaired spin density on O_2 ; in this sense species (4) is different from superoxo-type complexes of group 4 metals⁷ or cobalt⁸ for which a_{iso} (¹⁷O) = ca. 2.0 mT. A structure of the type shown in Figure 4 is therefore suggested as being the most probable.

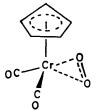


FIGURE 4. Probable structure of (4).

It is probable that species (4) arises from (1-3) via $[Cr(\eta^5-C_5H_5)(CO)_3]^9$ (6) but this is not proven: an attempt to spin-trap¹⁰ species (6) by nitrosodurene or 2-methyl-2nitrosopropane gave rise to uncharacterised paramagnetic complexes with relatively low values of nitrogen hyperfine splitting [e.g. PhMe solvent, ArNO trap, $g_{1so} = 1.9920$, $a_{\rm iso} ({}^{14}{\rm N}) = 0.56 \text{ mT}].^{11}$

We thank the S.R.C. for financial support and Dr. J. A. Hunter for assistance with computer simulations.

(Received, 2nd March 1981; Com. 232.)