Selenoxide Fragmentation Leading to Allylic Amides

By Akio Toshimitsu, Hiroto Owada, Toshiaki Aoai, Sakae Uemura,* and Masaya Okano (Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan)

Summary Oxidation-fragmentation of β -amidoalkyl phenyl selenides produces allylic amides selectively.

In double-bond formation by oxidation-fragmentation of β -hetero-substituted-alkyl phenyl selenides, the regiochemistry has been well established in the cases where the heteroatom is oxygen,¹ sulphur,² or chlorine.^{1b,3} However, little is known about the reactions of selenides bearing a nitrogen functional group on the β -position of the alkyl group, the only reports showing that in the oxidation of β dimethylaminoalkyl phenyl selenides⁴ an elimination away from the dimethylamino-group leading to allylic amines is moderately favoured, and that a mixture of allyl azide and vinyl azide (isomer ratio 3:2) is formed by oxidation of β -azidocyclohexyl phenyl selenide.⁵ We report here that oxidation-fragmentation of the easily accessible β - amidoalkyl phenyl selenides $(1)^6$ produces the allylic amides (2) selectively (Scheme 1).

In a typical reaction, 30% aqueous H_2O_2 (20 mmol) was added dropwise to a solution of 2-acetamidocyclopentyl phenyl selenide (2.0 mmol) in tetrahydrofuran (THF) (30 ml) at 0 °C and the resulting solution was stirred at

20 °C for 2 h. After the usual work-up, basic products were separated from diphenyl diselenide by extraction with 0.5 M aqueous HCl. The aqueous layer was rendered alkaline by addition of NaOH pellets and extracted with chloroform. Evaporation of solvent from this extract gave pure 3-acetamidocyclopentene (83%) as the sole product.

As shown in the Table, seven- and eight-membered ring β -amido-selenides as well as linear compounds also gave allylic amides selectively in excellent yields under the same conditions. As β -amido-selenides can be prepared by cnepot aminoselenation of olefins,⁸ these reactions constitute a good method for conversion of olefins into allylic amides.7

TABLE. Yields of allylic amides.ª

β -Amido-selenide (1) R ¹ R ²	% Yield ^b of allylic amide (2)
-[CH ₂] ₂ -	83 82
$-[CH_2]_{4}^{-}$	84c
H Me (threo)	68
H Me (erythro)	68

^a Carried out using the β -amido-selenide (1) (2 mmol) and 30% aq. H_2O_2 (20 mmol) in THF (20 ml) at 0-20 °C for 2 h. ^b Isolated yield (see text). ^c Isolated by column chromatography (silica gel; n-hexane-ethyl acetate, 1:1-1:2).

When six-membered ring β -amido-selenides (3) were treated under the same conditions the allylic amides were not formed, and instead white solids were obtained which were characterized as the selenoxides (4) $[\nu_{max}(SeO)]$ 816 (R=Me) and 805 (R=Prⁿ⁺) cm⁻¹][±] The stability δ of these selenoxides (4) seems to be due to the formation of an intramolecular hydrogen bond between the hydrogen atom of the amido-group and the oxygen atom of the selenoxide as depicted in Scheme 2.8 The dihedral angle of the C-Se and

C-N bonds (both substituents being equatorial on the cyclohexane framework[‡]) seems to be critical for the formation of an intramolecular hydrogen bond since selenoxides were not isolated from non-six-membered ring compounds or linear β -amido-selenides. Selenoxide fragmentation of (4; R = Me) in boiling tetrahydrofuran (for 1 h) or p-xylene (for 3 h) produced the allylic amide (5; R=Me) selectively, but only in moderate yields (43 and 63%respectively). The yields of (5) were improved without loss of selectivity by pyrolysis of (4) using kugelrohr distillation (250 °C; 2 mmHg) (Scheme 2).

(Received, 9th March 1981; Com. 264.)

† Prepared by a method analogous to that in ref. 6 using butyronitrile as solvent.

\$ Satisfactory i.r. and ¹H n.m.r. data as well as combustion analytical data were obtained. The stereochemistry of (4) and (5) was determined by the ¹H n.m.r. coupling constants for the hydrogen atom attached to the carbon atom bearing the selenium functional group (d of t; J 4—5 and 11—12 Hz, respectively).

§ The selenoxides (4) can be stored almost indefinitely at room temperature.

¹ (a) K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1973, 95, 2697; (b) J. Org. Chem., 1974, 39, 429; (c) W. Dumont, P. Bayet, and A. Krief, Angew. Chem., Int. Ed. Engl., 1974, 13, 804; H. J. Reich and S. K. Shah, J. Am. Chem. Soc., 1975, 97, 3250. ² K. C. Nicolaou, W. E. Barnette, and R. L. Magolda, J. Am. Chem. Soc., 1978, 100, 2567.

³ S. Raucher, Tetrahedron Lett., 1977, 3909.

1974, 52, 3202.

⁸ The formation of an intramolecular hydrogen bond has been proposed in β -hydroxycyclohexyl phenyl selenoxide: M. R. Detty, J. Org. Chem., 1980, 45, 274.