Enhanced Catalytic Activity of Specially Prepared Fe₂O₃ for the Isomerization of But-1-ene and Cyclopropane and the Dehydration of Butan-2-ol

By Kozo TANABE,* ATSUSHI KAYO, and TSUTOMU YAMAGUCHI (Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan)

Summary Ferric oxide prepared from iron alum by hydrolysis with urea exhibited enhanced activities compared with Fe_2O_3 prepared by other methods; in particular, the activity for the dehydration of butan-2-ol was found to be 2000 times higher than that of Fe_2O_3 prepared from iron alum by hydrolysis with aqueous ammonia.

It has been reported recently that the catalytic activities of $\text{TiO}_{2,}^{1,2} \text{ZrO}_{2,}^{3}$ and $\text{Fe}_2\text{O}_3^{4}$ were remarkably increased by the addition of a small amount of sulphate ion. We now report the change in activity of Fe_2O_3 caused by different methods of preparation, *i.e.* different starting materials (iron nitrate and alum) and different reagents for precipitation (ammonia and urea).

 Fe_2O_3 (A) and Fe_2O_3 (B) were prepared by hydrolysis of iron nitrate [Fe(NO₃)₃.9H₂O; G.R., Wako Pure Chemicals Ind. Ltd.] with aqueous ammonia (28%) and an excess of urea, respectively; the precipitates were washed with distilled water, dried, and calcined in air at 500 °C. Fe_2O_3 (C) and Fe_2O_3 (D) were prepared by hydrolysis of iron alum [Fe₂(SO₄)₃.(NH₄)₂SO₄.24H₂O; G.R., Nakarai Chemicals, Ltd.] with aqueous ammonia (28%) and an excess of urea, respectively, followed by the same procedure as above. Details of precipitation with urea have been described previously.¹ Double-bond isomerization of but-1-ene, ring-opening isomerization of cyclopropane, and dehydration of butan-2-ol were carried out independently at 100-200 °C in a closed recirculation reactor. The products were analysed by gas chromatography with a 5 m column of VZ-7 or a 1 m column of TCP.

The Table shows the catalytic activities [reaction rates, mol min⁻¹ (g of catalyst)⁻¹] and the surface areas of the four kinds of iron oxide. Fe₂O₃ (D), prepared from iron alum with urea, exhibited high catalytic activities for the three reactions compared with the other iron oxides prepared by different methods. In particular, the activity of Fe₂O₃ (D) was extremely high for the isomerization of cyclopropane and the dehydration of butan-2-ol. In the latter case, the activity of Fe₂O₃ (D) was about 2000 times higher than that of Fe₂O₃ (C) prepared from the same starting material (alum) with aqueous ammonia and about 300 times higher than that of Fe₂O₃ (B) prepared from iron nitrate with urea. The surface areas of Fe₂O₃ (D) and the other oxides differ only by a factor of 4—5 (Table).

According to gravimetric analysis, the content of SO_4^{2-} was 2 wt. % for Fe₂O₃ (D), but 0 wt. % for Fe₂O₃ (A), (B), and (C). Thus, the sulphate ion seems to be important for the production of pronounced catalytic activity, as reported

TABLE. Catalytic activities of iron oxides (A)-(E) prepared by different methods.

		<u> </u>						
		Pre-	But-1-ene	Cyclopropane isomerization		Butan-2-ol	Surface	SO4
Fe ₂ O ₃ catalyst	Starting materials	cipitating reagents	isomerizationª Rate ^b	Reaction temp./°C	Rateb	dehydration¢ RateÞ	$area/m^2 g^{-1}$	content/ wt %
(A)	Nitrate	Ammonia	12.3	200	0	0.018	13 ·0	0
(\mathbf{B})	Nitrate	Urea	5.56	200	0	0.074	18.0	0
(C)	Alum	Ammonia	12.6	200	0	0.011	11.3	0
(D)	Alum	Urea	101	100	81.5	21.5	53.5	2
(E)	Nitrate +(NH4)2SO4	Ammonia	90.3	100	44 ·2	4 ·0 4	37.4	2

^a Reaction temperature, 100 °C. ^b 10⁻⁵ mol min⁻¹ g⁻¹. ^c Reaction temperature, 200 °C.

(Received, 2nd March 1981; Com. 229.)

¹ K. Tanabe, M. Itoh, K. Morishige, and H. Hattori, in 'Preparation of Catalyst,' eds. B. Delmon, P. A. Jacobs, and G. Poncelet, Elsevier, Amsterdam, 1976, p. 65. ² M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1979, 1148. ³ M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1980, 851; M. Hino, S. Kobayashi, and K. Arata, J. Am. Chem. Soc., 1979,

101, 6439.

⁴ M. Hino and K. Arata, Chem. Lett., 1979, 477.