Transition Metal-catalysed N -Alkylation of Amines by Alcohols?

By R. GRIGG,* T. R. B. MITCHELL, S. SUTTHIVAIYAKIT, and N. TONGPENYAI *(Chemistry Depavtment, Queen's Univevsity, Belfast* BT9 5AG)

Summary Primary and secondary alcohols effect alkylation $R^1CH(OH)R^2 + M \rightleftharpoons R^1COR^2 + MH$ of primary and secondary amines in the presence of $R^1COR^2 + HNR^3R^4 \rightleftharpoons R^1R^2C(OH)NR^3R^4 \rightleftharpoons$ rhodium, iridium, and ruthenium compounds at $\leq 100 °C$, whereby selective monoalkylation of primary amines can be achieved, and heterocyclic rings can be constructed by both inter- and intra-molecular processes. $R^1R^2C=N$

THE N-alkylation of primary and secondary amines by reaction with alcohols can be achieved under forcing conditions by a number of metal catalysts, e.g. nickel,¹ nickelrhenium compounds,² thorium salts,³ silica-alumina,⁴ metal alloy catalysts,⁵ and mixed oxides of copper, barium, and chromium.6 Our work7 on metal-catalysed hydrogen transfer from alcohols to organic substrates suggested that similar catalyst systems should effect N-alkylation of amines by alcohols. We have accordingly studied such processes using both metal halide-triphenylphosphine mixtures, to generate phosphine complexes *in situ,* and preformed metalphosphine complexes as catalysts.

The N-methylation of pyrrolidine by methanol was examined using *in situ* metal-phosphine complex formation (molar ratio of metal salt : phosphine **1** : *5).* The catalytic activity (5 mol $\%$ catalyst) was found to decrease in the activity (5 mor % catalyst) was found to decrease in the order IrCl₃.H₂O-PPh₃ > Na₂IrCl₆-PPh₃ > RhCl₃.3H₂O-PPh₃ > 5% Pd–C. 5% Rh–C did not show any catalytic activity. Thus, iridium trichloride gave an 80% yield **(73%** of pyrrolidine consumed) of *N*methylpyrrolidine after boiling with a solution of pyrrolidine in methanol for **13** h. In comparison, *5%* Pd-C gave a 6% yield **(59%** of pyrrolidine consumed) after **46** h. N-Alkylation using preformed metal-phosphine complexes as catalysts resulted in a significant increase in rate (Table l), with $RhH(PPh₃)₄$ being the most active catalyst. Other amines and alcohols have been studied and some representative examples are shown in Table 2.

TABLE **1.** N-Methylation of pyrrolidine by methanol.&

Catalyst	Time/h	Yield of N -methyl- pyrrolidine $(\frac{9}{6})$
$RhH(PPh_a)$	4	97
$IrCl(PPh_{3})$	5	87
$RhCl(PPh_a)_3$	8	92
$mer-IrHa(PPha)a$	24	47
$RuH2(PPh3)4$	48	15

^aReactions carried out in boiling methanol using *5* mol % catalyst.

Metal complexes of the type studied in the present work (3) (4)

e known to debydrogenate primary and secondary (a, R = Buⁿ (a, R = B are known to dehydrogenate primary and secondary **a**; $R = Bu''$ **a**; $R = Bu^n$ alcohols to aldehydes and ketones respectively. The N- **b**; $R = CH_2Ph$ **b**; $R = CH_2Ph$ alkylation process can thus be represented as in the Scheme.

$$
\begin{array}{c}R^1\text{COR}^2 + \text{HNR}^3\text{R}^4 \rightleftharpoons R^1\text{R}^2\text{C}(\text{OH})\text{NR}^3\text{R}^4 \rightleftharpoons\\ R^1\text{R}^2\text{C} = \text{NR}^3\text{R}^4 + \text{OH}^- \end{array}
$$

$$
\mathrm{R}^1\mathrm{R}^2\mathrm{C}{=}\mathrm{N}\mathrm{R}^3\mathrm{R}^4 + \mathrm{MH} \rightleftharpoons \mathrm{R}^1\mathrm{R}^2\mathrm{CH}\mathrm{N}\mathrm{R}^3\mathrm{R}^4 + \mathrm{M}
$$

SCHEME

No imines were detected by g.l.c., suggesting that either carbinolamine formation or iminium ion formation was rate determining.[†] Pyrrolidine is known to form iminium species with carbonyl compounds with particular ease.⁸ We have previously shown that $RhH(PPh_3)_4$ is an efficient

TABLE 2. Catalytic N-alkylations using $RhH(PPh₃)₄$ (5 mol %).

^a Yields determined by g.l.c. using mesitylene as internal standard. **b** 1 mol % RhH(PPh₃)₄. **c** 1rCl₃.3H₂O-PPh₃(1:5 mol. ratio; 5 mol % IrCl₃.3H₂O).

catalyst for the reduction of imines by catalytic hydrogentransfer from propan-2-ol.⁹ Furthermore, both the $RhCl₃$ -PPh₃ (1:5) and IrCl_3 -PPh₃ (1:5) catalytic systems effect the reduction $(1) \rightarrow (2)$ by hydrogen transfer from propanyield (g.1.c.).

-f British patent pending to R. Grigg; European Patent Application No. 81,300,598, U.S.A., 234,803.

\$ Amine attack (carbinolamine formation) is rate determining under acidic conditions, whilst dehydration of the carbinolamine (iminium ion formation) is rate determining at pH values near or above neutrality: W. P. Jencks, *Prog. Phys. Org. Cham.,* 1964, **2,** 63.

The catalytic N-alkylation procedure can also be applied to ring synthesis. Thus the amines $(3a)$ and $(3b)$ are $(31\%$ by g.l.c.). cyclised to the pyrrolidines **(4a)** *(56%* isolated yield) and **(4b)** $(82\% \text{ by g.l.c.})$, respectively, by 5 mol $\%$ RhH(PPh₃₎₄ in boiling dioxan. In a similar manner butane-l,4-diol and

benzylamine **(10** : **1** mol. ratio) in boiling dioxan give **(4b)**

We thank Queen's University for support.

(Received, **30th** *Mwch* **1981;** *Corn.* **360.)**

¹ C. F. Winan and H. Adkins, *J. Am. Chem. Soc.,* 19<mark>32, 54, 3</mark>06.
² D. C. Best, U.S. P. 4,123,462.
³ M. V. Klynev and M. L. Khidekel, *Russ. Chem. Rev.,* 1980, **49**, 28; S. Baron, U.S. P. 4,076,649.
³ M. V. Klynev Hungarian P. **14,908** *(Chem. Abstr.,* **1978, 89, 179532n).**

S. V. Dobrovol'skii, **A.** F. Grigorov, L. I. Blyakhman, R. M. Grizik, N. I. Sidorova, I. G. Shipilova, N. P. Buldakova, I. G. Kronich, and V. F. Kashina, U.S.S.R. P. **644,526.**

C. E. Bibby, R. Grigg, and R. Price, *J. Chem.* Soc., *Dalton Trans.,* **1977, 872;** R. Grigg, T. R. B. Mitchell, and S. Sutthivaiyakit, *Tetrahedron Lett.,* **1979, 1067.**

J. Hine, R. C. Dempsey, R. A. Evangelista, E. T. Jarvi, and J. M. Wilson, *J. Org. Chem.,* **1977, 42, 1593.** R. Grigg, T. R. B. Mitchell, and N. Tongpenyai, *Synthesis,* **1981,** in the press.