Stereospecific Intramolecular Addition of α-Lithio Sulphoxides or Sulphones to Inactivated Double Bonds

By VANDA CERÉ, CLAUDIO PAOLUCCI, SALVATORE POLLICINO, EDDA SANDRI,* and ANTONINO FAVA* (Istituto di Chimica Organica, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy)

Summary Treatment of the 1-oxides or 1,1-dioxides of trans homoallylic 8—10 membered ring cyclic sulphides with BuLi in tetrahydrofuran results in transannular addition of the α -thio carbanion to the *E* double bond with formation of bicyclic products.

NUCLEOPHILIC additions to inactivated double bonds are rare.¹ We report the facile intramolecular addition of α -sulphinyl or -sulphonyl carbanions (lithio derivatives) to inactivated double bonds. The substrates were l-oxides or 1, l-dioxides of cyclic *n*-membered (n = 8—10) homoallylic sulphides of the *E*-configuration.² Their structure is such that carbon atom *n*, α to sulphur, faces the transannular double bond.³ When treated with BuLi in tetrahydrofuran (THF), α -lithio derivatives are formed which rapidly and quantitatively add to the double bond on the opposite side of the ring resulting in bicyclic products.[†] Under the same conditions the corresponding *Z*-isomers were inert. Thus,

† Satisfactory analytical and spectral data (¹H and ¹³C n.m.r.; m.s.) were obtained for all separated products.

J.C.S. CHEM. COMM., 1981

from the l-oxide^{\ddagger} of (E)-3,3-dimethylthiacyclo-oct-4-ene⁵ (1), a single product was formed, exo-4,4-dimethyl-2thiabicyclo[3.3.0]octane 2-oxide (2), which implies attack of C-8 on the C-4 end of the double bond. The exo structure was established by comparison of the ¹³C n.m.r. spectrum of (2) with that of (3), the isomeric sulphoxide obtained from (2) by sulphur inversion⁶ via alkaline hydrolysis of the ethoxysulphonium derivative.§

In an analogous reaction E-thiacyclodec-4-ene 1,1-dioxide gave a bicyclic product, identified as trans-l-thiadecalin 1,1dioxide (m.p. 115-116 °C) by comparison with an authentic sample prepared by oxidation of trans-1-thiadecalin.⁷ In

this case attack of C-10 occurs on the C-5 end of the double bond.

The reaction of the analogous 9-membered sulphone (4) also yields products via intramolecular attack at C-5; three major products (all m/e 174) were formed, two of which are isomeric cis- and trans-2-thiabicyclo[4.3.0]nonane 2,2-dioxides (5) and (6). The third appears to be a ring-contracted methyl sulphone (7) which probably arises by E1cb elimination from the carbanion initially formed by intramolecular addition at C-5, as depicted in the Scheme.

(Received, 22nd April 1981; Com. 477.)

 \ddagger Oxidation (NaIO₄) of racemic *E*-thiacyclo-oct-4-enes yields a single sulphoxide.⁴ Models show that for steric reasons only the sulphoxide may be formed where the oxygen atom projects outside. This is the (1*R*, 4*R*; 1*S*, 4*S*)-diastereoisomeric mixture.

 $\frac{13}{12}$ N.m.r.: δ (p.p.m. from Me₄Si), (2) 75·2 (d), 62·2 (t), 59·2 (d), 46·3 (s), 30·5 (q), 29·2 (t), 28·6 (t), 26·7 (t), and 25·4 (q); (3) 64·4 (t), 61·2 (d), 59·6 (d), 40·3 (s), 30·6 (q), 29·8 (t), 27·3 (t), 24·9 (q), and 21·8 (t). Particularly revealing are the upfield shifts (exo \rightarrow endo) of C-4 (46·3 \rightarrow 40·3) and C-8 (minimum 26·7 to 21·7).

Assignment of structure (7) is based on n.m.r. evidence which indicates the presence of a monosubstituted ethylene unit [^{13}C , δ 139.8 (d) and 115.9 (t) p.p.m.; ¹H, 5 6.07–4.87 (3H, m)] and a methyl sulphonyl group [¹³C, 5 40.1 (q) p.p.m.; ¹H, 5 2.71 (3H, s)].

¹ W. Ammann and C. Ganter, *Helv. Chim. Acta*, 1977, **60**, 1924; R. A. Pfund and C. Ganter, *ibid.*, 1979, **62**, 228; R. A. Pfund, W. B. Schweizer, and C. Ganter, *ibid.*, 1980, **63**, 674; C. A. Grob and H. Katayama, *ibid.*, 1977, **60**, 1890. ² E. Vedejs and J. P. Hagen, *J. Am. Chem. Soc.*, 1975, **97**, 6878; V. Ceré, C. Paolucci, S. Pollicino, E. Sandri, and A. Fava, *J. Org.*