Template Effect of Intramolecular Hydrogen-bonding in the Synthesis of [1.1.1]Cryptates

By RITA ANNUNZIATA, FERNANDO MONTANARI,* SILVIO QUICI,* and MARIA TERESA VITALI (Centro CNR and Istituto di Chimica Industriale dell'Università, Via C. Golgi 19, 20133 Milano, Italy)

Summary Condensation of monometallated [1.1]diazacoronand with diethylene glycol bis(methanesulphonate), as well as with its alkyl substituted derivatives, gives the corresponding [1.1.1]azamacrobicyclic polyethers through a template effect due to NH intramolecular hydrogenbonding.

AZAMACROPOLYCYCLIC polyethers (cryptands) are of great interest in organic chemistry.¹ However, their routine use is still severely limited by their long and expensive synthesis.² A striking case is that of [1.1.1]cryptand which is obtained in very low yield by Lehn's classical synthesis.[†] This cryptand is of exceptional interest because it is capable of selective and irreversible cryptation of protons.³

In an effort to overcome these drawbacks, the monolithium derivative of diazacoronand (1) was prepared from butyl-lithium (1 mol. equiv.) and (1) (1.44 g) in tetrahydrofuran (THF) (30 ml), and then condensed with diethylene glycol bis(methanesulphonate) (2; R = H) (2.19 g) in 30 ml of THF, first for 12 h at room temperature, and then under reflux for 4 days. In this way the macrobicyclic system was formed and directly precipitated from the boiling solution as the proton cryptate [H⁺ \subset (1.1.1)]MeSO₃⁻ (4a),of satisfactory purity (40% yield, m.p. >250 °C).

† The main reaction product is a macrotricyclic tetra-amine in which two diazacoronand rings are connected by two diethyleneoxy bridges.

The ¹H n.m.r. spectrum of (4) displays absorptions at δ 3.52 (t, CH_2OCH_2), 3.1 (m, CH_2N), and 2.6 (s, $CH_3SO_3^{-}$). Furthermore, a broad singlet at δ 9.6 indicates the presence of an N+-H hydrogen inside the bicyclic system. This hydrogen does not exchange with deuterium in D₂O solution, since intermolecular exchange is totally inhibited by the [1.1.1]bicyclic ligand.³ These data, in addition to the ¹³C n.m.r. spectrum, agree with those previously reported by Lehn et al.³ for the same macrobicyclic cation.

Identical yields were obtained when the reaction was repeated with 1 mol. equiv. of KH instead of BuLi. When 2 mol. equiv. of base (BuLi or KH) were used, unresolvable mixtures were obtained.

Starting from the alkyl-substituted ether (2b; R = n- $C_{14}H_{29}$), the corresponding alkylated macrobicyclic system (4b) was obtained, again as the proton cryptate (N+-H resonance at δ 9.6 in D₂O). It was isolated as [H+ \subset (1.1.1, C_{14}]I⁻, in 43% yield by column chromatography (alumina, 1:1 MeCN-CHCl₃), m.p. 65-67 °C from cyclohexane.^{‡§}

The experimental data exclude the possibility that a metal cation acts as a template in the formation of the [1.1.1]macrobicyclic ligands (4a) and (4b). However, they agree with the hypothesis that the NH hydrogen of the monosubstituted [1.1]diazacoronands (3a) and (3b) plays a template role by intramolecular hydrogen-bonding with the ethereal oxygen of the incoming chain and/or with the other nitrogen atom.

The synthetic approach to (4a) and (4b) described here rests therefore on two facts: (i) diversification of the two binding sites of the diazacoronand through monometallation; (ii) intramolecular binding of the incoming chain through the template effect of the NH hydrogen.

These criteria allow the formation of diazamacrobicyclic systems, avoiding the need for metal-ion template or highdilution techniques.¶

(Received, 13th April 1981; Com. 437.)

[‡] In the ¹H and ¹³C n.m.r. spectra of (4b), the hydrogen atoms and carbon atoms of the CH₂O and CH₂N groups each give rise to a series of distinct signals, as expected for a chiral molecule. Compound (4b) gave satisfactory C, H, N, and I analyses; m/e 441.

§ Under comparable dilution conditions and with BuLi as base, the macrobicyclic derivatives (7a) and (7b) were obtained in yields of 25 and 26%, respectively, from [2.2]diazacoronand (5) and the triethylene glycol bis(methanesulphonates) (6a; R = H) and (6b; $R = n-C_{14}H_{20}$). Compound (7a) was isolated as the $[K^+ \subset (2.2.2)]I^-$ cryptate; (7b) as the free cryptand⁴ after decomplexation Compound (7a) was isolated as the $[K^+ \subset (2.2.2)]I^-$ cryptate; (7b) as the free cryptand after decomplexation in acidic medium and addition of LiOH.

 \P The synthesis of N₄ macrocyclic imine ligands through the intervention of intramolecular hydrogen-bonding has recently been reported (ref. 5).

¹ J. M. Lehn, Struct. Bonding (Berlin), 1973, 16, 1; Acc. Chem. Res., 1978, 11, 49; Pure Appl. Chem., 1977, 49, 857; ibid., 1978, 50, 871; ibid., 1980, 52, 2303, 2441; R. M. Izatt and J. J. Christensen, 'Synthetic Multidentate Macrocyclic Compounds,' Academic Press, New York, 1978.

² B. Dietrich, J. M. Lehn, J. P. Sauvage, and J. Blanzat, *Tetrahedron*, 1973, 29, 1629.
³ J. Cheney, J. P. Kintzinger, and J. M. Lehn, *Nouv. J. Chim.*, 1978, 2, 411.
⁴ D. Landini, A. Maia, F. Montanari, and P. Tundo, *J. Am. Chem. Soc.*, 1979, 101, 2526.

⁵ P. G. Owston, R. Peters, E. Ramsammy, P. A. Tasker, and J. Trotter, J. Chem. Soc., Chem. Commun., 1980, 1218.