Two-electron Addition Reactions and Reversible Carbonylation of an Unsaturated Pentanuclear Osmium Complex; X-Ray Crystal Structure of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNG}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{PEt}_{3}\right)\right]$

By Zain Dawoodi, Martin J. Mays,* and Paul R. Raithby
(University Chemical Labovatory, Lensfield Road, Cambridge CB2 1EW)

Summary Reaction of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ with $\mathrm{L}=$ $\mathrm{PEt}_{3}, \mathrm{CNBu}^{\mathrm{t}}$, and CO yields $1: 1$ addition products of the type $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{L}\right]$, the reaction with CO being reversible; the structure of the PEt_{3} adduct has been established by an X-ray structural analysis.

We have recently reported an X-ray diffraction study of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ (1) which revealed that the edgebridged tetrahedron of metal atoms present in the molecule possesses two adjacent unusually short metal-metal bonds $(2 \cdot 60 \AA) .{ }^{1}$ We suggested on this basis that the molecule might constitute the first example of a cluster of nuclearity >3 with localised multiple metal-metal bonds, and we now present chemical and further structural evidence which substantiates this suggestion. Thus the reactions of (1)
with $\mathrm{PEt}_{3}, \mathrm{CNBu}^{\mathrm{t}}$, and CO demonstrate that (1) is coordinatively unsaturated, and an X-ray diffraction study of the $1: 1$ adduct with PEt_{3} reveals that addition takes place without the ligand dissociation or modification of the metal atom skeleton which would have been expected in the absence of unsaturation. These features are typical of clusters such as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{H}_{2}\right]^{2}$ and its substituted derivatives ${ }^{3}$ in which the presence of localised metal-metal multiple bonds has been previously established.

The addition of a slight excess of PEt_{3} to a hexane solution of $(\mathbf{1})$ at room temperature gave one major product within minutes, which was separated by t.l.c. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ hexane). The mass spectrum of this product (2) showed a parent ion at $m / e 1624$ (${ }^{192} \mathrm{Os}$) indicative of the stoicheiometry $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{PEt}_{3}\right)\right]$ and the ${ }^{1} \mathrm{H}$ n.m.r.

(1)

(2)
spectrum showed a metal-hydride singlet resonance (δ $-20 \cdot 2$) shifted from that found for (1) $(\delta-19.07)$. There were also marked changes in the i.r. spectrum of (2) [$\nu_{c o}$ (hexane) $2081 \mathrm{vs}, 2038 \mathrm{~s}, 2033 \mathrm{~s}, 2012 \mathrm{~s}, 2003 \mathrm{~m}, ~ 1995 \mathrm{~m}$, $1998 \mathrm{sh}, 1972 \mathrm{w}, 1950 \mathrm{w}, 1942 \mathrm{w}$, and 1914 w] as compared to (1). The complex (2) was crystallised by slow cooling of a saturated solution in warm benzene to give square green-black plates in ca. 60% yield.

Crystal data: $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Os}_{5} \mathrm{P}, M=1621 \cdot 5$, monoclinic, space group $P 2_{1} / c, a=21 \cdot 146(5), b=11 \cdot 079(4)$, $c=17 \cdot 779(5) \AA, \beta=111.44(2)^{\circ}, U=3877 \cdot 0 \AA^{3}, Z=4$, $D_{\mathrm{c}}=2.78 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=164.17 \mathrm{~cm}^{-1} .5848$ intensities were recorded ($2 \theta_{\max }=50.0^{\circ}$) on a Stoe 4circle diffractometer using graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation. Lorentz polarisation and numerical absorption corrections were applied and the data averaged to give 3707 unique observed intensities $[F>4 \sigma(F)]$. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by blocked full-matrix least squares [$\mathrm{Os}, \mathrm{N}, \mathrm{P}$, and C (ethyl) anisotropic, ethyl and phenyl H riding $1.08 \AA$ from the relevant C] to $R=0.050$ and $R_{\mathrm{w}}=\Sigma w^{\frac{1}{2}} \Delta / \Sigma w^{\frac{1}{2}}\left|F_{0}\right|=0.045 . \dagger$

Figure 1. The molecular structure of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)\right]$, (2), including the atom numbering scheme. Bond lengths: $\operatorname{Os}(1)-\mathrm{Os}(2), 2 \cdot 785(2)$; $\mathrm{Os}(1)-\mathrm{Os}(3), 2 \cdot 831(2) ; \mathrm{Os}(1)-$ $\mathrm{Os}(4), 2 \cdot 836(2) ; \mathrm{Os}(1)-\mathrm{Os}(5), 2 \cdot 823(2) ; \mathrm{Os}(2)-\mathrm{Os}(3), 2 \cdot 926(2) ;$ $\mathrm{Os}(2)-\mathrm{Os}(5), \quad 2.833(2) ; \quad \mathrm{Os}(3)-\mathrm{Os}(4), \quad 2.826(2) ; \quad \mathrm{Os}(3)-\mathrm{Os}(5)$, $2 \cdot 767(2) ; \operatorname{Os}(2)-\mathrm{P}(1), 2 \cdot 412(12) ; \operatorname{Os}(1)-\mathrm{N}(1), 2 \cdot 25(3) ; \operatorname{Os}(2)-\mathrm{N}(1)$, $2 \cdot 09(2) ; \operatorname{Os}(4)-\mathrm{N}(1), 2 \cdot 11(2) ; \mathrm{Os}(4)-\mathrm{N}(2), 2 \cdot 06(2) \AA$; bond angles: $\mathrm{Os}(1)-\mathrm{N}(1)-\mathrm{Os}(2), \quad 79 \cdot 7(8)$; $\mathrm{Os}(1)-\mathrm{N}(1)-\mathrm{Os}(4), \quad 81 \cdot 0(6)$; $\mathrm{Os}(2)-$ $\mathrm{N}(1)-\mathrm{Os}(4), 121 \cdot 2(8)^{\circ}$.

The structure of (2) is shown in Figure 1 whose caption includes some important bond parameters. The edgebridged tetrahedron of Os atoms present in (1) is retained, but all the metal-metal distances are greater than $2.8 \AA$ which indicates that no bonds of significant multiple character are present. The o-semidine-type ligand found in (1) has changed its orientation relative to the metal skeleton so that $\mathrm{N}(2)$, which was previously bound to $\mathrm{Os}(1)$, is now bound to $\mathrm{Os}(4)$ in a similar fashion. A transfer of a carbonyl group from $\mathrm{Os}(4)$ to $\mathrm{Os}(1)$ accompanies this change. The total number of electrons donated to the cluster by the organic ligand is presumably the same as in (1) and overall, therefore, a formal 2 -electron addition reaction without major modification of the metal atom skeleton has occurred. The PEt_{3} ligand is co-ordinated to $\mathrm{Os}(2)$, which has also transferred a carbonyl group to $\mathrm{Os}(1)$. The other structural features of (1) are essentially unchanged in the adduct (2).

The site at which attack by the nucleophile has occurred is not the expected one, since neither of the two shortest metal-metal bonds in (1) is associated with it. It could be that crowding round $\mathrm{Os}(1)$, the site of greatest unsaturation in (1), hinders the approach of the relatively bulky phosphine ligand.

The reaction of ($\mathbf{1}$) with $\mathrm{CNBu}^{\mathrm{t}}$ in hexane proceeds in a similar manner to give one major product in ca. 50%

Figure 2. I.r. spectra of (a) $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\right]$, (b) CO adduct.

[^0]yield, of stoicheiometry $\left[\mathrm{Os}_{5}(\mathrm{CO})_{13} \mathrm{H}\left(\mathrm{PhNC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{CNBu}^{\mathrm{t}}\right)\right.$] [$\mathrm{m} / \mathrm{e} 1589$ (${ }^{192} \mathrm{Os}$)] and the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of this complex shows an Os- H singlet resonance at $\delta-\mathbf{2 1 . 9}$ again shifted in position from the corresponding resonance in (1). The i.r. spectrum ($\nu_{\mathrm{co}} 2087 \mathrm{~m}, 2060 \mathrm{~s}, 2041 \mathrm{~m}, 2035 \mathrm{~m}$, $2026 \mathrm{~m}, 2009 \mathrm{~m}, 1997 \mathrm{w}, 1989 \mathrm{~m}, 1976 \mathrm{w}$, and 1918 w) shows a strong absorption at $2175 \mathrm{~cm}^{-1}$ due to ν_{NC}, confirming the presence of the $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ ligand, but is otherwise similar to that of (2), suggesting an analogous formulation.

When CO gas is passed through an octane solution of (1) for 2 h at room temperature, a single green product is obtained in quantitative yield. The i.r. spectrum of this product is identical to that of (1), except that the bands at

2021 and $1998 \mathrm{~cm}^{-1}$ show a marked increase in intensity relative to the remainder of the spectrum (Figure 2). Its formation is reversible and, when a stream of nitrogen is passed thraugh a solution of it or if it is allowed to stand in air for 2 h , the i.r. spectrum of the solution indicates complete reconversion into (1). Such reversible carbonylation is not a common process in cluster chemistry, but has been observed for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{H}_{2}\right], 4$ and constitutes a further analogy between the chemistry of (1) and this molecule.

We thank Johnson Matthey, Ltd. for the loan of OsO_{4} and the S.R.C. for financial support.
(Received, 25th March 1981; Com. 344.)

[^1]
[^0]: \dagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

[^1]: ${ }^{1}$ Z. Dawoodi, M. J. Mays, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1980, 712.
 ${ }^{2}$ M. R. Churchill, F. J. Hollander, and J. P. Hutchinson, Inorg. Chem., 1977, 16, 2697.
 ${ }^{3}$ R. D. Adams and N. M. Golembeski, Inorg. Chem., 1979, 18, 1909.
 ${ }^{4}$ A. J. Deeming and S. Hasso, J. Organomet. Chem., 1976, 114, 313; J. R. Shapley, J. B. Keister, M. R. Churchill, and B. G. DeBoer, J. Am. Chem. Soc., 1975, 97, 4145.

