The Bond Graph

By Steven H. Bertz
(Bell Laboratories, Murray Hill, New Jersey 07974)

Summary The concept of the bond graph is introduced for the extension of 'branching' and 'topological' indices from saturated to unsaturated hydrocarbons as the key
step in the construction of a general index of complexity for molecular skeletons.

Gordon and Kennedy have described how a set of graphtheoretical invariants, $N_{i j}$, the number of distinct ways in which skeleton i can be cut out of skeleton j,' \dagger can be used as 'branching' indices to correlate the thermodynamic properties of saturated hydrocarbons. ${ }^{1}$ One member of this set, $N_{2 j}$ (the number of ways that propane can be cut out of a skeletal ${ }^{1}$ or hydrogen-suppressed ${ }^{2}$ molecular graph, M^{\prime}), is of special interest because it is the simplest one that reflects branching. ${ }^{3}$ In order to construct a general index of molecular complexity useful in synthetic analysis, ${ }^{4}$ in the correlation of properties with structure, ${ }^{1,2}$ and in molecular evolution, ${ }^{5}$ it is necessary to generalize this invariant to make it applicable to unsaturated systems as well.

This extension can be accomplished by considering the graph-theoretical 'first derivative,' ${ }^{6}$ or line graph, $B(M)$, of

the molecular graph $M .{ }^{7}$ For chemical applications the term bond graph is a natural one, \ddagger as it is derived by representation of each of the lines (bonds) of M by a point and then connecting a pair of points with a line whenever the corresponding bonds are adjacent. As an immediate application, the construction of $B(M)$ from M provides a simplified basis for the derivation of the topological molecular orbitals of M. ${ }^{8}$ Considering the definition of the bond graph and that $N_{2 j}$ can be defined as the number of pairs of adjacent bonds in a saturated hydrocarbon, $N_{2 j}$ equals the number of lines in the bond graph \ddagger of M^{\prime}, as illustrated in Figure 1 for the isomeric pentanes.

Previously, it was not obvious how to 'cut' propane out of multiple bonds. By defining $N_{2 j}$ as the number of lines in $B\left(M^{\prime}\right)$, this limitation can be overcome. Note that the alternative definition, the number of pairs of adjacent bonds, still holds because adjacency is a binary relationship.§ For example, ethylene has one pair of adjacent bonds, and its bond graph contains one line. Further examples are given in Figure 2. Definition of a pair of adjacent bonds as a connection allows the number of lines in the bond graph to be expressed as the number of connections. $\boldsymbol{\pi}$

The minimum criteria for a useful index of complexity are (i) the index must be able to treat all structural features and (ii) the index must do so in a consistent way, i.e. always increase as the numbers of complicating factors increase. Figure 1 shows how the number of connections increases with branching and Figure 2 shows how this number increases with substitution about a multiple bond. The examples in the Table demonstrate that it also increases with chain length (and monocyclic ring size), cyclization (the number of rings for a given number of atoms), and degree of unsaturation.

Table								
Molecule	Connections	MerrifieldSimmons	RandićWilkins	BonchevTrinajstić	Hosoya	Randić	Rashevsky	Wiener
Ethane	0	3	1	0	2	1.00	0	1
Propane	1	5	3	2.8	3	1.41	0.92	4
n -Butane	2	8	6	$8 \cdot 8$	5	1.91	1.00	10
n -Pentane	3	13	10	18.5	8	$2 \cdot 41$	1.52	20
2-Methylbutane	4	14	10	$15 \cdot 2$	7	$2 \cdot 27$	1.92	18
2,2-Dimethylpropane	6	17	10	$9 \cdot 7$	5	$2 \cdot 00$	$0 \cdot 72$	16
Cyclobutane	4	7	12	$5 \cdot 5$	7	$2 \cdot 00$	0	8
Cyclopentane	5	11	20	$10 \cdot 0$	11	2.50	0	15
Cyclohexane	6	18	30	$22 \cdot 8$	18	$3 \cdot 00$	0	27
Bicyclobutane	8	6	19	3.9	8	1.97	1.00	7
Tetrahedrane	12	5	30	0	10	$2 \cdot 00$	0	6
Prismane	18	13	129	$14 \cdot 6$	32	$3 \cdot 00$	0	21
Ethene	1	a	2	0	a	a	0	1
Ethyne	3	a	3	0	a	a	0	1
Cyclobutene	7	a	18	$5 \cdot 5$	a	a	1.00	8

a Undefined by authors.
\dagger In more mathematical terms ' $N_{i j}$ is the number of subgraphs of [graph j] isomorphic with [graph i],' (see ref. 1).
\ddagger In addition, it avoids confusing constructions such as 'the number of lines of the line graph.'
§ Thus, the line graph of a multigraph is a simple graph (see ref. 6).
TI This term results in a great economy of words. For saturated hydrocarbons it can also be used synonymously with 'paths of length two' (see ref. 10).
$\left.\begin{array}{l}\text { In contrast, while the index of Merrifield and Simmons }\end{array}\right\}$

In contrast, while the index of Merrifield and Simmons ${ }^{8}$ topology) incre tion (see butane, cyclobutane, bicyclobutane, and tetrahedrane). The Randić-Wilkins index ${ }^{10}$ (the number of selfavoiding paths) does not change with branching (see the解 decreases with branching and with cyclization as does the Wiener index ${ }^{12}$ (the sum of the distances). The Hosoya index ${ }^{13}$ increases with chain length and with cyclization, or it tetrahedrane and to cyclohexane and prismane. Rashevsky index ${ }^{5}$ (the 'information' on equivalent points) drops to zero whenever all the atoms are equivalent, no 'r how large the molecule. In spite of their limitations, have been applied to many problems. ${ }^{1-3,5,9-14}$
It may be hoped that the bond graph will aid in these endeavours and new ones.
Added in proof: Dr. W. J. Wiswesser has informed the author that the simple length of his line notation can be used as a rough index of complexity. For the molecules in the Table, his values are (top to bottom): 2, 2, 2; 2, 5, 7; 4, 4, 4; 5, 11, 15; 2, 2, 6.
(Received, 24th February 1981; Com. 209.)

[^0]
[^0]: ${ }^{1}$ M. Gordon and J. W. Kennedy, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 484; see also J. W. Essam, J. W. Kennedy, M. Gordon, and P . Whittle, ibid., 1977, 73, 1289.
 , Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, 1976, p. $27-64$.
 Gordon and G. R. Scantlebury, Trans Faraday Soc. $1964,60,604$
 ${ }_{5}^{5} \mathrm{~N}$. Rashevsky, Bull. Math. Biophys., 1955, 17, 229.
 ${ }^{6}$ F. Harary, 'Graph Theory,' Addison-Wesley, Reading, Ma., 1969, p. 71.
 ${ }^{7}$ M. Gordon and W. B. Temple, J. Chem. Soc. A, 1970, 729.
 W. C. Herndon, M. L. Ellzey, Jr., and K. S. Raghuveer, J. Am. Chem. Soc., 1978, 100, 2645
 ${ }^{10}$ M. Randić and C. L. Wilkins, Chem. Phys. Lett., 1979, 63, 332.
 ${ }_{11}$ D. Bonchev and N. Trinajstić, J. Chem. Phys., 1977, 67, 4517.
 Wiener, J. Am. Chem. Soc., 1947, 69, 17
 ${ }^{14}$ M. Randić, J. Am. Chem. Soc., 1975, 97, 6609.

