The Solvolysis of Orthotelluric Acid in HF

By WALTER TÖTSCH, PAUL PERINGER, and FRITZ SLADKY*

(University of Innsbruck, Institute for Inorganic and Analytical Chemistry, A-6020 Innsbruck, Austria)

Summary The stereochemistry of the solvolysis of orthotelluric acid in hydrogen fluoride has been followed up by ¹²⁵Te n.m.r. spectroscopy for each individual step of replacement of a hydroxy-group by fluorine.

THE stereospecificity of the preparative routes for cis- and trans-(HO)₂TeF₄¹ prompted us to re-examine the solvolysis of orthotelluric acid in HF. Previous results indicated the replacement of up to four hydroxy-groups by fluorine in the system (HO)₆Te-40% aqueous HF.² The identification of the products by paper chromatography, however, did not allow a discernment between possible stereoisomers. From ¹⁹F n.m.r. studies of solutions of (HO)₆Te in aqueous and anhydrous HF the formation of four unknown species and of (HO)_nTeF_{6-n} (n = up to 3) was deduced.³ Assignment of three singlets to specific isomers was based on n.m.r. systematics. Only asym-(HO)₃TeF₃ (AB₂ spin system) was identified unambiguously.

With the aid of ¹²⁵Te n.m.r. spectroscopy and by isolating most of the intermediate species we were able to follow the stereochemical route of the solvolysis of orthotelluric acid in HF step by step (Scheme).

If $(HO)_{6}$ Te is dissolved in aqueous HF, the product exclusively formed is cis- $(HO)_{4}$ TeF₂ and not the expected $(HO)_{5}$ TeF which has previously been reported.³ $(HO)_{5}$ TeF

SCHEME. Solvolysis of orthotelluric acid in HF. Reactions take place along the arrows as indicated by dissolving the starting material in aqueous or anhydrous HF, and warming the solutions to ca. 60 °C for ca. 2 h.

^a Not observed in 48% HF. ^b Hydrolysis products of TeF₆.

appears to be stable only in the presence of excess of (HO), Te. To discern between cis- and trans-(HO), TeF2 which have identical spin systems in ¹⁹F n.m.r. (A₂) and ¹²⁵Te n.m.r. (A₂X) spectroscopy the corresponding tetramethoxy-derivatives were prepared (equation 1). Owing

$$(HO)_4 TeF_2 + 4 CH_2N_2 \rightarrow (MeO)_4 TeF_2 + 4 N_2$$
(1)

to ¹²⁵Te-¹⁹F-¹H coupling, cis-(MeO)₄TeF₂ was expected to exhibit a triplet of septets of septets which was indeed observed.[†] trans-(MeO)₄TeF₂ would be expected to show a triplet of a 13-line multiplet.

further to give HOTeF₅⁵ and traces of TeF₆. ¹²⁵Te-N.m.r. data for the identification of the compounds $(HO)_n TeF_{6-n}$ are given in the Table.

In contrast with the hydrolysis of TeF_6 , which appears to be governed entirely by kinetics,⁴ the products of the solvolysis of (HO)₆Te in HF are the thermodynamically favoured isomers. Separate studies of isomerization reactions, which proceed only at elevated temperatures and with a much slower rate than the solvolysis, prove cis- $(HO)_4 TeF_2$ and trans- $(HO)_2 TeF_4$ to be more stable than $trans-(HO)_4 TeF_2$ and $cis-(HO)_2 TeF_4$, respectively. The solvolysis of cis-(HO)₄TeF₂, the only step in which both of

TABLE. ¹²⁵ Te N.m.r.	data for	· (HO) _n TeF _{6-n} .
---------------------------------	----------	--

	Spin			Coupling constants (Hz)	
	Solventb	system	δ(Te)/p.p.m.ª	$\hat{J}(\mathrm{Te}\check{\mathrm{F}}_{\mathbf{A}})$	J(TeFв)
(HO) ₆ Te	i	x	707		
(HO), TeF	ii	$\mathbf{A}\mathbf{X}$	722	2754	_
cis-(HO)4TeF2	ii	A_2X	708	2951	
trans-(HO) TeF2	ii	$\tilde{A_2X}$	711	2895	
sym-(HO), TeF,	iii	A ₃ X	678	3136	
asym-(HO) ₃ TeF ₃	iii	$AB_{2}X$	671	3315	3253
cis-(HO), TeF4	ii	$A_2 B_2 X$	652	3247	3307
trans-(HO)2TeF4	ii	A ₄ X	649	3443	
HOTeF	ii	AB₄X	601	3339	3552

^a Relative to Me₂Te. ^b i, H₂O; ii, MeCN; iii, ca. 80% aqueous HF.

cis-(HO)₄TeF₂ is the final product of the solvolysis of (HO), Te in 48% aqueous HF. Further fluorination only occurs in anhydrous HF with the formation of sym- and asym-(HO)₃TeF₃ in ca. 1:1 ratio. By comparison, trans- $(HO)_4 TeF_2$, a hydrolysis product of TeF_6 ,⁴ is converted into asym-(HO)₃TeF₃ exclusively. Only this acid undergoes further solvolysis to trans-(HO)₂TeF₄, which together with sym-(HO)₃TeF₃ is the final product of the solvolysis of (HO)₆Te in anhydrous HF. Interestingly, cis-(HO)₂-TeF₄, again only a hydrolysis product of TeF₆,⁴ reacts

the possible isomers are formed, produces sym- and asym- $(HO)_3TeF_3$ in the expected statistical 1:1 ratio. This indicates an identical kinetic barrier for the displacement of a hydroxy-group trans to a fluorine atom and trans to another hydroxy-group by fluorine in cis-(HO)₄TeF₂. Since no isomerization occurs between sym- and asym- $(HO)_{3}TeF_{3}$ both species must be of comparable thermodynamic stability as well.

(Received, 12th May 1981; Com. 560.)

 $\dagger \textit{cis-(MeO)}_{4} \text{TeF}_{2} \text{ (A}_{2} \text{M}_{6} \text{N}_{6} \text{X}): \delta(\text{Te}) \text{ 698 p.p.m. } [\textit{J}(\text{TeF}) \text{ 3174}, \textit{J}(\text{TeH}_{M}) \text{ 108}, \textit{J}(\text{TeH}_{N}) \text{ 86 Hz}].$

- ¹ W. Tötsch and F. Sladky, J. Chem. Soc., Chem. Commun., 1980, 927.
- ² L. Kolditz and I. Fitz, Z. Anorg. Allg. Chem., 1967, 349, 175. ³ U. Elgad and H. Selig, Inorg. Chem., 1975, 14, 140.

- ⁴ W. Tötsch and F. Sladky, Angew. Chem., in the press. ⁵ A. Engelbrecht and F. Sladky, Monatsh. Chem., 1965, 96, 159.