Isolation and X-Ray Grystal Structure of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O} .18 \text {-crown-6] }\right]_{n}^{2+}\left[\mathrm{PF}_{6}\right]_{2 n}^{-n}$ A Linear Face-to-face Hydrogen Bonded Chain Copolymer

By Howard M. Colguhoun
(Corporate Labovatory, Imperial Chemical Industries Ltd., P.O. Box 11, The Heath, Runcorn, Cheshire WA7 4QE)
J. Fraser Stoddart
(Department of Chemistry, The University, Sheffield S3 7HF)
and David J. Williams
(Chemical Crystallography Laboratory, Imperial College, London SW7 2AY

Summary X-Ray crystallography reveals that the [aquo-(tetra-ammine) copper] ${ }^{2+}$ ion forms a chain copolymer with 18 -crown-6 in which each individual crown molecule is involved in no fewer than ten hydrogen bonds with four ammine ligands co-ordinated to the copper(II) centres in adjacent ions.

We have proposed ${ }^{1}$ that the crystalline $1: 1$ adduct formed between trans- $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$ and 18-crown-6 (18C6) has the structure of a regular alternating copolymer represented by the repeating unit, [trans $\left.-\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2} .18 \mathrm{C} 6\right]_{n}$. It is envisaged that alternating 18 C 6 molecules in this structure serve as bifunctional six-point binding sites for two ammine ligands associated with adjacent trans $-\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$ complexes. We have now examined the consequences for adduct formation with 18C6 of increasing the number of ammine ligands co-ordinated to the transition metal. In complexes such as $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, the aquo-ligand and all four ammine ligands attached to copper contain acidic hydrogen atoms potentially able to form hydrogen bonds

Figure 1. The crystal structure of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) .18 \mathrm{C} 6\right]_{n}^{2+}$ $\left[\mathrm{PF}_{6}\right]_{2 n}^{-}$.
with the oxygen atoms of 18 C 6 . This communication describes the isolation and crystal structure of the $1: 1$ adduct, $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) .18 \mathrm{C} 6\right]_{n}^{2+}\left[\mathrm{PF}_{6}\right]_{2 n}^{-}$.

Addition of an aqueous solution ($2 \mathrm{~cm}^{3}$) of 18C6 (2.16 $\mathrm{mmol})$ to $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}\left[\mathrm{PF}_{6}\right]^{-}{ }_{2}(2 \cdot 16 \mathrm{mmol})$ dissolved in the minimum volume of 3 m aqueous ammonia afforded, on standing at room temperature for 3 h , deep blue crystals of a $1: 1$ adduct $\dagger\left(34 \%\right.$, m.p. $\left.183{ }^{\circ} \mathrm{C}\right) . \quad X$-Ray analysis \ddagger revealed (Figure 1) that the adduct does indeed have a copolymeric structure in which 18C6 molecules alternate with $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ ions. The details of the hydrogen bonding interactions are summarised in Figures 2 and 3.

Figure 2. The structural detail and selected geometrical parameters associated with the ten-point binding site in the solid state. Bond distances: C-C $1 \cdot 46(1)$ and $1.47(1), \mathrm{C}-\mathrm{O}, 1 \cdot 40-$ $1 \cdot 44(1), \quad \mathrm{Cu}-\mathrm{N}(1) \quad 2 \cdot 04(1), \quad \mathrm{Cu}-\mathrm{N}(2) \quad 2 \cdot 03(1), \quad \mathrm{Cu}-\mathrm{O} \quad 2 \cdot 29(1) \AA$. Bond angle at $\mathrm{O}(1)$ and $\mathrm{O}(7) \quad 111(1)^{\circ}$. Torsional angles: $|\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}| 63 \cdot 0-66 \cdot 8(7),|\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}| \quad 176 \cdot 9-179 \cdot 5(7)^{\circ}$. Distance $R[\mathrm{~N}(1 \mathrm{a}) \cdots \mathrm{N}(\mathrm{lb})], 3 \cdot 37 \AA$.

In addition to the six hydrogen bonds between the 18C6 oxygen atoms and $\mathrm{N}(\mathrm{la})$ and $\mathrm{N}(\mathrm{lb})$, a further four hydrogen bonds are formed between the $\mathrm{N}(2 \mathrm{a})$ and $\mathrm{N}(2 \mathrm{~b})$ ammine ligands to $O(7)$ and $O(13)$, and $O(4)$ and $O(16)$, respectively. Thus, individual 18C6 molecules are involved in no fewer than ten hydrogen bonds, $O(1)$ and $O(10)$ each accepting
one hydrogen bond with trigonal geometry, and $\mathrm{O}(4), \mathrm{O}(7)$, $\mathrm{O}(13)$, and $\mathrm{O}(16)$ all accepting two hydrogen bonds, one each from the $\mathrm{N}(1)$ ammine ligands with approximately trigonal geometry and one each from $\mathrm{N}(2)$ ammine ligands with approximately tetrahedral geometry (Figure 3).

Figure 3. Diagrammatic representation of one-half of the hydrogen bonding pattern associated with the ten-point binding site. Hydrogen bond distances, $R(\mathrm{~N} \cdots \mathrm{O})(\AA)$; angles (θ), between COC planes and (a) NO vectors and (b) HO vectors: $\mathrm{N}(1 \mathrm{a})-\mathrm{H} \cdots \mathrm{O}(1) 3 \cdot 27$; (a) 12 , (b) $1 . \mathrm{N}(1 \mathrm{a})-\mathrm{H} \cdots \mathrm{O}(7) 3 \cdot 06$; (a) 11, (b) 11. $\mathrm{N}(2 \mathrm{a})-\mathrm{H} \cdots \mathrm{O}(7) 3 \cdot 28$; (a) 43 , (b) 48.

Presumably, these hydrogen bonding interactions involving the $N(2 a)$ and $N(2 b)$ ammine ligands are responsible for the relative tilt of alternate 18 C 6 rings (Figure 1). The structure has high crystallographic symmetry with the Cu^{2+} ion located on a special position. The $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ ion has $C_{2 v}$ symmetry (mm), the 18 C 6 has $C_{2 h}$ symmetry ($2 / \mathrm{m}$), and the $\mathrm{PF}_{6}{ }^{-}$ion has C_{s} symmetry (m) and is disordered within the mirror plane. Alternate $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ ions are related by a centre of symmetry located at the centre of the crown which adopts the characteristic all-gauche conformation with approximately $D_{3 d}$ symmetry. The aquo-ligand is co-ordinated trigonally to the Cu^{2+} ions but does not participate in hydrogen boiding interactions§ with 18C6. Thus, the $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) .18 \mathrm{C} 6\right]_{n}^{2+}\left[\mathrm{PF}_{6}\right] \frac{-}{2 n}$ chain copolymer displays a structure related to that of the $\left[\mathrm{MnNO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} .18 \mathrm{C} 6\right]_{n}^{+}\left[\mathrm{NO}_{3}\right]_{n}^{-}\left[\mathrm{H}_{2} \mathrm{O}\right]_{n}$ adduct ${ }^{2}$ in which four of the five aquo-ligands participate in hydrogen bonding to 18 C 6 molecules.
(Received, 13th May 1981; Com. 570.)
\dagger A satisfactory elemental analysis was obtained for the $1: 1$ adduct, $\nu($ Nujol $) 3640$ and $3555(\mathrm{OH}), \mathbf{3 3 5 5}, 3270$, and $3205(\mathrm{NH})$, $1635(\mathrm{NH}$ and OH$), 1100(\mathrm{CO})$, and $830(\mathrm{PF}) \mathrm{cm}^{-1}$.

[^0]§ However, there are close approaches (3.05 and $3.08 \AA$) of two of the fluorine atoms in $\mathrm{PF}_{6}-$ ion to the oxygen atom of the aquoligand.

[^1]
[^0]: \ddagger Crystals of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) .18 \mathrm{C} 6\right]_{n}^{2+}\left[\mathrm{PF}_{8}\right]_{2 n}^{-}$are orthorhombic, space group $C m c m, a=19 \cdot 275(2), b=10 \cdot 018(1), c=14 \cdot 672(1) \AA$, $U=2833 \AA^{3}, Z=4, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=31 \mathrm{~cm}^{-1}$. Of the 972 independent reflections $\left(\theta \leqslant 55^{\circ}\right)$ measured on a diffractometer using $\mathrm{Cu}-K_{\alpha}$ radiation, 51 were classified as unobserved. The structure was solved by the heavy atom method and the absorption corrected data were refined to give a current $R=0.064$. All hydrogen positions were unambiguously located in a weighted difference electron density map. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

[^1]: ${ }^{1}$ H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, J. Chem. Soc., Chem. Commun., preceding communication.
 ${ }^{2}$ A. Knöchel, J. Kopf, J. Oehler, and G. Rudolph, Inorg. Nucl. Chem. Lett., 1978, 14, 61 .

