Reactions of Alkynes with Bridging Alkylidyne Ligands in Metal Complexes: X-Ray Crystal Structures of [FeW{μ₂-C(C₆H₄Me-4)·C(Me)·C(Me)}(CO)₅-(η-C₅H₅)] and [Fe₂W(μ₃-CC₆H₄Me-4)(μ₂-Me₃SiC₂SiMe₃)(μ-CO)-(CO)₆(η-C₅H₅)]

By John C. Jeffery, Kevin A. Mead, Hayat Razay, F. Gordon A. Stone, Michael J. Went, and Peter Woodward

(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

Summary Carbon-carbon bond formation via reactions of alkynes with di- or tri-metal complexes having bridging tolylidyne ligands is described, and the structures of the complexes [FeW{ μ_2 -C(C₆H₄Me-4)C(Me)C(Me)}(CO)₅(\eta-C₅H₅)] and [Fe₂W(μ_2 -CC₆H₄Me-4)(μ_2 -Me₃SiC₂SiMe₃)(μ -CO)-(CO)₆(η -C₅H₅)] are established by X-ray diffraction studies.

WE have previously shown^{1,2} that di- and tri-metal complexes with bridging CR ligands can be synthesised in a step-wise manner from mononuclear metal carbyne complexes and low-valent compounds of other metals. Herein we report the reactivity of these species towards alkynes, leading to carbon-carbon bond formation and the isolation of metal complexes of interest in the context of isolobal relationships,³ and of alkyne metathesis.

The dimetal compound² [RhW(μ -CC₆H₄Me-4)(CO)₃(η - $C_5H_5(\eta-C_9H_7)$ reacts with PhC=CPh (toluene, 110 °C, 2 d) to give purple crystals (80% yield) of complex (1). The ¹⁸C n.m.r. spectrum (CH₂Cl₂-CD₂Cl₂) is in accord with the structure proposed. The resonance for the ligated μ -C atom in the ¹³C n.m.r. spectrum of the reactant at δ 312 p.p.m. is replaced in the spectrum of (1) by signals due to the μ_2 -C^a(C₆H₄Me)·C^b(Ph)·C^c(Ph) group at δ 120·4 [C^b, J(RhC)] 5 Hz], 104.8, and 104.4 p.p.m. [Ca and C^c, J(RhC) 10 Hz]. The compound [CoW(μ -CC₆H₄Me-4)(CO)₃(η -C₅H₅)(η -C₅Me₅)] similarly reacts with PhC=CPh and with MeC=CMe to afford, respectively, dark green crystals of (2) {30% yield, v_{co} (hexane) 1 941s and 1 881s cm⁻¹; ¹³C n.m.r. (CDCl₃), δ 121 (C^b), 94 and 93 p.p.m. (C^a and C^c)}, and of (3) {40% yield; $\nu_{c0}(\rm hexane)$ 1 937s and 1 875s cm^-1; $^{13}\rm C$ n.m.r. (CH₂Cl₂-CD₂Cl₂), § 117 (C^b) and 92.5 and 89 p.p.m. (C^a and C^{c} }.

The structurally related iron-tungsten compounds (4)— (7)[†] were prepared by allowing the tri-metal complex [Fe₂W(μ -CC₆H₄Me-4)(μ -CO)(CO)₈(η -C₅H₅)] to react with the appropriate alkyne in toluene at 40—60 °C for several hours. In order to establish the structure of this new class of complex a single-crystal X-ray diffraction study of (4) was carried out.[‡]

Crystal data: $C_{22}H_{18}FeO_5W$, M = 601.9, monoclinic, space group C2/c, a = 26.01(1), b = 12.880(4), c = 12.554(5)Å, $\beta = 105.10(3)^{\circ}$, U = 4.060(3) Å³, Z = 8, $D_c = 1.97$ g cm⁻³, F(000) = 2.320, μ (Mo- K_{α}) = 61.8 cm⁻¹. Current R 0.039 (R' = 0.044) for 3.334 absorption-corrected intensities [220 K, $2\theta \leq 55^{\circ}$, $I \geq 2.5 \sigma(I)$, Nicolet P3m diffractometer, Mo- K_{α} ($\bar{\lambda} = 0.710.69$ Å)].

The molecular structure (Figure 1) shows an Fe–W bond bridged by a three-carbon chain, with the tungsten atom bonded to the two terminal carbon atoms and the iron attached to all three carbon atoms. Although the bridging ligand may be regarded as an allyl group, η^3 -bonded to iron and linked to tungsten by two σ bonds, an alternative description of an Fe(CO)₃ group η^4 -bonded to a tungstacyclobutadiene ring is more attractive in view of the isolobal relation between W(CO)₂(η -C₅H₅) and CR. However, owing to the presence of the metal-metal bond [2.720(1) Å],

† Selected spectroscopic data (i.r. measured in methylcyclohexane, ¹H n.m.r. in CDCl₂, ¹³C {¹H}-decoupled in CDCl₂-CH₂Cl₂): (4), $v_{co} 2 041s$, 1 981s, 1 961w, and 1 925w cm⁻¹; n.m.r.: ¹H, δ 1·88, 2·17, and 2·28 (3 × s, 9 H, Me), 5·04 (s, 5 H, C₅H₅), and 7·06 (m, 4 H, C₆H₄); ¹³C, δ 220·5 and 220·4 [WCO, J(WC) 142 Hz], 214·5 (FeCO), 145·1 (C¹ of C₆H₄Me-4), 135 (C⁴ of C₆H₄Me-4), 130·1 (μ -C^b), 128·9 and 128·6 (C², C³, C⁵, and C⁶ of C₆H₄Me-4), 101·1 and 99·0 [μ -C^a and μ -C^c, J(WC) 47 and 51 Hz], 87·9 (C₅H₅), 25·1 (μ -C^bMe), 21·1 (C₆H₄Me), and 18·2 p.p.m. (μ -C^cMe); (5), v_{co} , 2 049s, 1 991s, 1 965w, and 1 929m cm⁻¹; n.m.r.: measured on 2:1 mixture of isomers (5a) and (5b), ¹H, (5a) δ 2·24 (s, 3 H, Me-4), 5·12 (s, 5 H, C₅H₅), 6·85 (m, 4 H, C₆H₄), and 7·02 (m, 10 H, Ph); (5b), δ 2·30 (s, 3 H, Me-4), 5·12 (s, 5 H, C₆H₄), and 7·02 (m, 10 H, Ph); (5b), δ 2·30 (s, 3 H, Me-4), 5·12 (s, 5 H, C₆H₄, and μ -C^b), 100·0, 99·3, and 99·0 (μ -C^a and μ -C^c), 88·8 (C₆H₅), 21·0 (Me-4), and 21·3 p.p.m. (Me-4); (6), ¹⁹F n.m.r. (CDCl₄, rel. CCl₄F external, positive shifts to high frequency), δ 32·88 [q, 3 F, CF₃, *J*(FF) 8 Hz] and 21·86 p.p.m. [q, 3 F, CF₃, *J*(FF) 8 Hz].

‡ Atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

FIGURE 1. Molecular structure of [FeW { μ -C(C₆H₄Me-4)C(Me)-C(Me) {(CO)₅(η -C₅H₆)], (4). Fe–W 2.720(1), Fe–C(6) 2.047(6), Fe–C(7) 2.103(6), Fe–C(8) 2.083(6), W–C(6) 2.194(6), W–C(8) 2.154(7), C(6)–C(7) 1.440(8), C(7)–C(8) 1.435(8), Fe–CO mean 1.78(1), W–C(1) 2.03(1), W–C(2) 2.01(1) Å; \angle Fe–C(6)–W 79.7(2), Fe–C(8)–W 79.6(2), W–C(6)–C(7) 95.9(3), C(6)–C(7)–C(8) 101.9(5), C(7)–C(8)–W 97.3(4), C(8)–W–C(6) 61.6(2)°.

which is necessarily longer than the Fe- μ -C distances

[mean 2.078 Å], the $W \cdot C(6) \cdot C(7) \cdot C(8)$ ring is not planar. The stability of the rings in (1)—(7) may be delicately balanced. Evidence for this was found with (5), the n.m.r. spectra[†] revealing the presence in solution of two isomers [(5a) and (5b), 2:1] corresponding to the bridge-forms $C(C_6H_4Me-4) \cdot C(Ph) \cdot C(Ph)$ and $C(Ph) \cdot C(C_6H_4Me-4) \cdot C(Ph)$. The statistical scrambling of the CPh and CC_6H_4Me-4 groups could proceed via an iron-tungsten intermediate with μ -CPh and μ -PhC₂C₆H₄Me-4 ligands, rotation of the latter⁴ with reformation of C-C bonds giving the mixture.

Formation of (4)—(7) involves loss of an Fe(CO)₃ group from [Fe₂W(μ -CC₆H₄Me-4)(CO)₉(η -C₅H₅)]. Some understanding of the steps involved in cluster degradation was gained by studying reactions of the cluster with Me₃SiC₂SiMe₃ and $Bu^{t}C_{2}SiMe_{3}$ which afforded complexes (8) and (9), the latter as a mixture of isomers.¶ The ¹³C n.m.r. spectrum of (8) showed a resonance at δ 257.7 p.p.m. for the μ_3 -C atom and signals at 107.8 and 75.7 due to the alkynecarbon atoms CSiMe_a. To establish the overall structure an X-ray diffraction study of (8) was carried out.

Crystal data: $C_{28}H_{30}Fe_2O_7Si_2W$, M = 830.3, monoclinic, space group $P2_1$, a = 8.922(5), b = 38.765(15), c = 10.055(4)Å, $\beta = 114.30(4)^\circ$, U = 3170(3) Å³, $D_{\rm m} = 1.72$ g cm⁻¹, Z = 4, $D_{\rm c} = 1.74$ g cm⁻³, F(000) = 1.632, μ (Mo- K_{α}) = 47.2 cm⁻¹. Current R 0.051 (R' 0.051) for 7 443 absorptioncorrected intensities [293 K, $2\theta \leq 60^{\circ}$, $I \geq 4.0 \sigma(I)$].

FIGURE 2. Molecular structure of $[Fe_2W(\mu_3-CC_6H_4Me-4)(\mu_2-Me_3SiC_2SiMe_3)(\mu-CO)(CO)_6(\eta-C_5H_5)]$, (8). Dimensions of one of C(6)-C(7)-Si(2) 137.1(9).

The molecular structure (Figure 2) shows a near-isosceles triangle of metal atoms triply bridged by a tolylidyne ligand [though with the bridging carbon atom notably further from Fe(2) than from Fe(1)] and with the W-Fe(2) bond transversely bridged, on the opposite side of the triangle to the tolylidyne ligand, by the Me₃SiC₂SiMe₃ ligand. Each iron atom carries three carbonyl groups, of which one of those on Fe(2) is semibridging to Fe(1).

We thank the S.R.C. for support and a research studentship (K. A. M.), and the Syrian Ministry of Education and the University of Aleppo for a scholarship (H. R.).

(Received, 4th June 1981; Com. 655.)

¶ Selected spectroscopic data are as follows: (8), v_{CO} 2 057s, 2 015s, 1 999s, 1 977m, 1 967m, 1 879w, and 1 861w cm⁻¹; n.m.r.: ¹H, δ 0·30 (s, 9 H, SiMe), 0·44 (s, 9 H, SiMe), 2·36 (s, 3 H, Me-4), 5·46 (s, 5 H, C₈H₆), and 7·3—6·9 (m, 4 H, C₆H₄); (9a, b), v_{CO} 2 055s, 2 045w, 2 009s, 1 997s, 1 973m, 1 965m, 1 877w, and 1 861w cm⁻¹, ¹³C n.m.r. (CDCl₃, {¹H}-decoupled), δ 257·2 (μ_{3} -C), 251·4 (μ_{4} -C), 239·7 (μ -CO), 236·1 (μ -CO), 220·9, 219·2, 210·6, 209·9, 209·1, 208·3, and 207·7 (7 × CO), 159·2 (C¹ of C₆H₄Me-4), 149·5 (Bu⁴C₂SiMe₃), 135·9 (C⁴ of C₆H₄Me-4), 129·6 (C², C³, C⁵, C⁶ of C₆H₄Me-4), 112·0 (Bu⁴C₂SiMe₃), 97·2 (C₆H₆), 41·0 (CMe₃), 38·8 (CMe₃), 34·2 [C(CH₃)₃], 20·9 (Me-4), 3·7 (SiMe), and 2·4 p.p.m. (SiMe).

¹ T. V. Ashworth, J. A. K. Howard, and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1980, 1609. ² M. J. Chetcuti, M. Green, J. C. Jeffery, F. G. A. Stone, and A. A. Wilson, *J. Chem. Soc., Chem. Commun.*, 1980, 948; M. J. Chetcuti, M. Green, J. A. K. Howard, J. C. Jeffery, R. M. Mills, G. Pain, S. J. Porter, F. G. A. Stone, A. A. Wilson, and P. Woodward, ibid., p. 1057.

³ B. E. R. Schilling, R. Hoffmann, and D. L. Lichtenberger, J. Am. Chem. Soc., 1979, 101, 585; A. R. Pinhas, T. A. Albright, P. Hofmann, and R. Hoffmann, Helv. Chim. Acta, 1980, 63, 29.

⁴ N. M. Boag, M. Green, J. A. K. Howard, F. G. A. Stone, and H. Wadepohl, J. Chem. Soc., Dalton Trans., 1981, 862.