Triorganotin Hydride Reduction of 6β-Isothiocyanatopenicillanates: A Radical-induced Sulphur-C(2) Bond Cleavage

By D. Ivor John* and Nicholas D. Tyrrell
(Department of Chemistry, University of London King's College, Strand, London WC2R 2LS)

and Eric J. Thomas*
(The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QU)
Summary Triorganotin hydride reduction of methyl 6β isothiocyanatopenicillanate is accompanied by intramolecular radical capture and cleavage of the sulphur-C(2) bond to give thiazolines (9) and (10); a similar mechanism is proposed for the formation of thiazoline (3), a minor product of tri-n-butyltin hydride reduction of benzyl 6α-(1-hydroxy-1-methylethyl)-6 β-isocyanopenicillanate (1; $\mathrm{R}^{2}=\mathrm{Me}_{2} \mathrm{COH}$).

Recently the tri-n-butyltin hydride reduction of 6α-alkyl6β-isocyanopenicillanates (1) was shown to be a useful stereoselective synthesis of 6β-alkylpenicillanates (2). ${ }^{1}$ A minor side-product was formed in some of these reductions, and was isolated in 15% yield from the reduction of benzyl 6α-(1-hydroxy-1-methylethyl)-6 β-isocyanopenicillanate ($\mathbf{1}$; $\mathrm{R}^{2}=\mathrm{Me}_{2} \mathrm{COH}$), being identified as thiazoline (3). We here report that reduction of methyl 6β-isothiocyanatopenicillanate (8) with tin hydride reagents proceeds with predominant sulphur- $\mathrm{C}(2)$ bond cleavage to give rearranged thiazolines as the only isolable products. ${ }^{2}$

Thus, treatment of methyl 6β-isothiocyanatopenicillanate $(8)^{3}$ with either tri-n-butyl- or triphenyl-tin hydride in

(1) $\mathrm{R}^{1}=\mathrm{CN}-, \mathrm{R}^{2}=$ alkyl
(3) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
(2) $\mathrm{R}^{\dagger}=$ alkyl, $\mathrm{R}^{2}=\mathrm{H}$
(4) $R^{1}=H, R^{2}=D$
(5) $R^{1}=\mathrm{SnBu}_{3}^{n}, R^{2}=H$
(6) $R^{1}=D, R^{2}=H$
(7) $R^{1}=D, R^{2}=D$
refluxing benzene, in the presence of a trace of azobisisobutyronitrile, led to the formation of thiazolines ($\mathbf{9}$) and (10). These products were difficult to purify, repeated chromatography on silica causing loss of the tin moiety giving dithiourethane (11) \dagger which was isolated in 30% overall yield. A more efficient cleavage of the tin moiety was achieved by treatment with tetra-n-butylammonium
\dagger Satisfactory spectroscopic data were obtained for all new compounds. In addition thiazolines (11), (12), and (13) were characterized using accurate mass data.
fluoride ${ }^{4}$ in dioxan ($25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$). Use of this procedure, for example, in the case of the triphenylstannylthiothiazoline (10), led to the isolation of the dithiourethane (11) in 68% yield after silica chromatography. Alternatively, treatment of the triphenylstannylthiothiazoline (10) with methyl

iodide ${ }^{5}$ in benzene ($25{ }^{\circ} \mathrm{C}, 5$ days), followed by aqueous potassium fluoride (to remove tin residues), led to the isolation of the crystalline methylthiothiazoline (12), m.p. 84$86^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-229^{\circ}\left(\mathrm{CHCl}_{3}\right)$, in 48% yield after silica chromatography. The structure of (12) was established by spectroscopic methods, e.g. $\nu_{\max } 1760,1730$, and $1560 \mathrm{~cm}^{-1}, \delta$ $\left(\mathrm{CDCl}_{3}\right) 0.95$ and 1.3 (each $\left.3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{CHMe} e_{2}\right), 2 \cdot 1-$ $2.4(\mathrm{lH}, \mathrm{m}, \mathrm{CHMe}), 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4 \cdot 15\left(1 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, \mathrm{CHCO}_{2} \mathrm{Me}\right)$, and $5 \cdot 9$ and 6.04 (each $1 \mathrm{H}, \mathrm{d}, J 4 \cdot 1 \mathrm{~Hz}, \mathrm{NCH}$ and CHS). Finally, treat. ment of thiazoline (9) with bromine (1 mol$)^{5}$ led to the formation of disulphide (13), 59% isolated after silica chromatography.

The formation of thiazolines (9) and (10) is reminiscent of the formation of thiazolines (15) on attempted AgNO_{3} catalysed hydrolysis of the 6α-fluoro- 6β-iminochlorides (14). ${ }^{6}$ However a radical process must be involved in our case. Perhaps addition of the trialkyltin radical to the isothio-cyanato-group to give adduct (16) is followed by intramolecular capture and cleavage of the sulphur-C(2) bond to give the tertiary radical (17). Transfer of a hydrogen atom to this radical from the tin hydride reagent would then complete the cycle. This radical-induced sulphur-C(2) cleavage is analogous to the reverse of a proposed mechanism for the formation of the thiazolidine ring in penicillin biosynthesis. ${ }^{7}$

A similar mechanism seems to be involved in the formation of the thiazoline side products observed in the 6β -

(16)
(9) or (10) $+\mathrm{R}_{3} \mathrm{Sn}^{\circ} \longrightarrow$

(17)
isocyanopenicillanate reductions. ${ }^{1}$ Use of $\mathrm{Bu}_{3}^{\mathrm{a}} \mathrm{SnD}$ to reduce the 6α-(1-hydroxy-1-methylethyl)- 6β-isocyanopenicillanate ($1 ; \mathrm{R}^{2}=\mathrm{Me}_{2} \mathrm{COH}$) gave the thiazoline (4) labelled at the valine β-position only, consistent with this proposal. Moreover, examination of the reduction of isonitrile (1; $\mathrm{R}^{2}=\mathrm{Me}_{2} \mathrm{COH}$) by $\mathrm{Bu}_{3}^{\mathrm{n}} \mathrm{SnH}$ suggests that the immediate rearrangement product is the unstable tri-n-butyltin thiazoline intermediate (5) since the imino-proton $\left(\mathrm{R}^{\mathbf{1}}\right)$ is not observable by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. This intermediate thiazoline (5) rapidly loses the tin moiety on silica chromatography (or more slowly over a period of weeks in chloroform solution) to provide thiazoline (3). If the intermediate (5) is decomposed by treatment with $\mathrm{D}_{2} \mathrm{O}$-acetone in the presence of silica, deuteriated thiazoline (6) is obtained together with a small amount of the non-deuteriated product, $(\mathbf{6}):(\mathbf{3})=4: 1$. Moreover reduction of isonitrile $\left(\mathbf{1} ; \mathrm{R}^{2}=\right.$ $\mathrm{Me}_{2} \mathrm{COH}$) with $\mathrm{Bu}_{3}^{\mathrm{n}} \mathrm{SnD}$, followed by decomposition of the intermediate tri-n-alkylstannylthiazoline in $\mathrm{D}_{2} \mathrm{O}$-acetonesilica, led to an analogous mixture comprising the dideuteriothiazoline (7), and the monodeuteriothiazoline (4), again in a ratio of $4: 1$, respectively.

We thank the S.R.C. for a CASE award (to N. D. T.) and Beecham Pharmaceuticals for generous support.
(Received, 28th May 1981; Com. 634.)

[^0]
[^0]: ${ }^{1}$ D. I. John, E. J. Thomas, and N. D. Tyrrell, J. Chem. Soc., Chem. Commun., 1979, 345.
 ${ }^{2}$ D. H. R. Barton, G. Bringmann, G. Lamotte, R. S. H. Motherwell, and W. B. Motherwell, Tetrahedron Lett., $1979,2291$.
 ${ }^{3}$ Koninklijke Nederlandsche Gist en Spiritusfabriek N.V., Ger. Offen. 2,062,297, 1971.
 ${ }^{4}$ E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.
 ${ }^{5}$ E. W. Abel and D. B. Brady, J. Chem. Soc., 1965, 1192; J. E. Leibner and J. Jacobus, J. Org. Chem., 1979, 44, 449.
 ${ }^{6}$ W. A. Spitzer, T. Goodson, M. O. Chaney, and N. D. Jones, Tetrahedron Lett., 1974, 4311.
 ${ }^{7}$ J. E. Baldwin and T. S. Wan, J. Chem. Soc., Chem. Commun., 1979, 249.

