Deoxovanadium(IV) Complexes of the Dibenzotetramethyltetra-aza[14]annulene Ligand: Formation of Products containing Thioxo-, µ-Nitrido-, and Oxidatively Coupled Ligands

By VIRGIL L. GOEDKEN* and JUDITH A. LADD

(Department of Chemistry, The Florida State University, Tallahassee, Florida 32306)

Summary Deoxygenation of the oxovanadium(IV) complex, $V(C_{22}H_{22}N_4)O$, with anhydrous HCl yields $V(C_{22}H_{22}-N_4)Cl_2$. HCl from which a thioxo-complex, $V(C_{22}H_{22}N_4)S$, is obtained by reaction with H_2S , and a μ -nitrido-complex $[V(C_{22}H_{22}N_4)-N-V(C_{22}H_{22}N_4)]^+$ is obtained by reaction with ammonia; a ligand-coupled dimer of $V(C_{22}H_{22}N_4)O$ is obtained by reaction with mild oxidants.

THE chemistry of vanadyl complexes has been largely ignored because of the inertness of the $V=O^{2+}$ bond $(t_{1/2}$ for O-exchange with bulk water is *ca.* 400 min)¹ and the unusually high bond energy of $V=O^{2+}$ (atomization energy = 140 kcal/mol).² We have now synthesised oxovanadium(IV) complexes of (1), deoxygenated the V^{IV} centre, and used the highly charged V^{IV} centre as a site to polarize and activate substrate molecules.

Reaction of $VO(MeCO_2)_2$ with (1) (see the Scheme) yields (2). This compound, although exhibiting a reversible one-

electron oxidation wave at +0.245 V vs. standard calomel electrode (S.C.E.) (cyclic voltammetry) with 0.1 M electrolyte, reacts irreversibly with chemical oxidants such as O_2 , Ag^I, Ce^{IV}, or I₂ to yield deep blue-green solutions from which PF_6^- or ClO₄⁻ salts can be isolated. Physical evidence suggests an oxidatively coupled species (3) via C- γ of the pentanedi-iminato-chelate rings, similar to oxidatively coupled species characterized for the Ni^{II} complex of this ligand.³ Reaction of (3) with NEt₃ yields a complex with properties very similar (electronic spectra, $v_{V=0}$ stretch, etc.) to those of (2) but for which mass spectral data implicate a dimer (m/e = 818).

Reaction of (2) with anhydrous HCl deoxygenates the V^{IV} complex, forming (4) with C- γ of one of the pentanediiminato-rings protonated (i.r. spectra show two C=N imine bonds). Unlike many of the other dihalogeno-vanadium complexes with bi- or tetra-dentate Schiff base ligands,⁴ even freshly prepared (4) is only sparingly soluble in all

SCHEME. i, toluene, reflux, 18 h, ii, [O], PF₆, iii, base (NEt₃), iv, HCl, MeCN, v, H₂O, vi, NH₃, BPh₄, vii, H₂S, pyridine.

solvents tested, making characterization difficult. Treatment of this complex with H₂S and base yields the thioxoanalogue of (2), (5) ($v_{v=s}$ 545 cm⁻¹). As expected, this complex is extremely unstable with respect to hydrolysis, regenerating (2).

Reaction of (4) with NH_3 in MeCN produces a deep red solution from which $[V(C_{22}H_{22}N_4)-N-V(C_{22}H_{22}N_4)]BPh_4$ $[E_{1/2}(\text{ox}) = -0.863 \text{ V vs. S.C.E. with } 0.1 \text{ M electrolyte}]$ crystallizes on addition of NaBPh4. Consistent with this formulation is the absence of an N-H stretch in the i.r. spectrum and a new absorption at 890 cm⁻¹ assignable to a V-N stretch. Hydrolysis of this complex to (2) and NH_3 is relatively slow, requiring several minutes in a 1:1 mixture of MeCN: H_2O . The sole precedent for a μ -nitrido-bridge among the first-row transition metal complexes is found in the very well characterized, mixed valence complex $[FeTPP-N-FeTPP]^+$ (TPP = tetraphenylporphyrin).⁵

The e.s.r. spectral parameters of (4) and (5) (Table) are consistent with those expected on substitution of an oxogroup by two chloride ligands⁶ or a thioxo-group,⁷ respectively. Room temperature solution spectra and lowtemperature (-130 °C) glassy spectra at X-band frequencies were obtained for all these species in a toluene-acetonitrile

- ² J. Berkowitz, W. A. Chupka, and M. G. Inghram, *J. Chem. Phys.*, 1957, **27**, 87. ³ F. C. McElroy and J. C. Dabrowiak, *J. Am. Chem. Soc.*, 1976, **98**, 7112.
- ⁴ M. Pasquali, A. Torres-Filho, and C. Floriani, J. Chem. Soc., Chem. Commun., 1975, 534; M. Pasquali, F. Marchetti, and C. Floriani, Inorg. Chem., 1979, 18, 2401.
- ⁵ D. A. Summerville and I. A. Cohen, J. Am. Chem. Soc., 1976, 98, 1747.
- ⁶ A. Jezierski and J. B. Raynor, J. Chem. Soc., Dalton Trans., 1981, 1. ⁷ K. P. Callahan, P. J. Durand, and P. H. Rieger, J. Chem. Soc., Chem. Commun., 1980, 75.

TABLE. Spin-Hamiltonian parameters for selected vanadium(IV) complexes.

(2)	(4)	(5)
1.973	1.960	1.9703
1.9587	1.9534	1.9607
1.9805	1.9636	1.9751
96.09	74.76	81.16
161.98	180.60	143.35
$63 \cdot 15$	21.85	50.04
	(2) 1·973 1·9587 1·9805 96·09 161·98 63·15	

(50:50) mixture. The averaged solution values for the $\langle g \rangle$ tensors and the nuclear hyperfine interaction, $\langle A \rangle$, tensors of both species are appreciably reduced compared with the values for (2). These reductions clearly represent a relative decrease of charge on the central vanadium(IV) ion and increased covalency in the metal-axial ligand bonds. The large decrease in g_1 observed for (4) may be an indication of cis-co-ordination of the halide ligands. A decrease in g_{\parallel} with trans-geometry and decreases in g_1 with cis-coordination have been noted in the e.s.r. spectra of other dihalogeno-vanadium(IV) complexes.6

(Received, 11th May 1981; Com. 552.)

¹ R. Kent Murmann, Inorg. Chim. Acta, 1977, 25, L43.